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Nonlinear Evolution of Quantum States in the Adiabatic Regime
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We investigate adiabatic evolution of quantum states as governed by the nonlinear Schrödinger
equation and provide examples of applications with a nonlinear tunneling model for Bose-Einstein
condensates. Our analysis not only spells out conditions for adiabatic evolution of eigenstates but also
characterizes the motion of noneigenstates which cannot be obtained from the former in the absence of
the superposition principle. We find that Aharonov-Anandan phases play the role of classical canonical
actions and are conserved in the adiabatic evolution of noneigenstates.
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analogous to canonical actions in classical systems [10]. overall phase of the wave function; we took it to be
Adiabatic evolution has been an important method of
preparation and control of quantum states [1,2]. The main
guidance comes from the adiabatic theorem of quantum
mechanics [3], which dictates that an initial nondegener-
ate eigenstate remains to be an instantaneous eigenstate
when the Hamiltonian changes slowly compared to the
level spacings. More precisely, the quantum eigenstate
evolves only in its phase, given by the time integral of
the eigenenergy (dynamical phase) and a quantity inde-
pendent of the time duration (geometric phase). The
linearity of quantum mechanics then immediately allows
a precise statement on the adiabatic evolution of non-
eigenstates through the superposition principle.

Our concern here is how the adiabatic theorem gets
modified in nonlinear evolution of quantum states. Non-
linearity has been introduced as possible modifications of
quantum mechanics on the fundamental level [4]. Our
motivation, however, derives from practical applications
in current pursuits of adiabatic control of Bose-Einstein
condensates (BECs) [5], which can often be accurately
described by the nonlinear Schrödinger equation. Here
the nonlinearity stems from a mean field treatment of the
interactions between atoms. Difficulties in theoretical
study of adiabatic control of the condensate arise not
only from the lack of unitarity [6] but also from the
absence of the superposition principle [7,8].

In this Letter we attempt to overcome these difficulties
by combining ideas from classical adiabatic dynamics
and quantum geometric phases. Noticing that the eigen-
states correspond to extremum points of the system
energy, we find that their adiabatic condition depends
on the Bogoliubov excitation spectrum about such
points and has nothing to do with level spacings be-
tween the eigenstates. Also, because of nonlinearity, the
adiabatic evolution of noneigenstates cannot be expressed
as a superposition of such eigenstates with conserved
probabilities as in the linear case. We find that the
Aharonov-Anandan (AA) phases [9], which can be de-
fined for cyclic or quasicyclic quantum states (at fixed
control parameters), can serve as adiabatic invariants
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As an illustration and application, we study a simple two-
mode BEC system.

General formalism.—The Schrödinger equation,
linear or nonlinear, can be written in the form [11]
( �h � 1)

i
d j
dt

�
@
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j
H � ; �;R�; (1)

where  j is the jth amplitude of the wave function  over
an orthonormal basis set, H is the energy of the system,
and R denotes all the system parameters subject to adia-
batic change. It is known that the Schrödinger equation
has a canonical structure of classical dynamics. One can
show, for example, that for each j the probability j jj2 and
phase arg j form a canonical pair, which satisfies the
Hamilton’s equations of motion with the energy H serv-
ing as the classical Hamiltonian. In this sense, the non-
linear Schrödinger equation is often termed classical
[12], although the linear Schrödinger equation has not
been called so.

However, our original system is quantum mechanical,
which should impose additional structures in the corre-
sponding canonical dynamics. Specifically, the system
has the gauge symmetry that H is invariant under shifts
in the overall phase of the wave function. This implies
that the total probability must be conserved and the
dynamics of the overall phase can be separated from
the rest of the degrees of freedom. For example, in a finite
dimensional problem, with j � 1; 2; . . . ; N, we can
choose a new set of canonical variables: pj � j jj2;
qj � arg j � arg N; j � 1; 2; . . . ; N � 1, and pN �PN
j�1 j jj

2; qN � arg N. Because the Hamiltonian is in-
dependent of qN , so that pN is conserved and can be set to
unity, the other variables form a closed set of
Hamiltonian dynamics,

dqj
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The gauge symmetry also allows the introduction of a
geometric phase for the quantum state. Let 
 be the
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FIG. 1. The two top panels show eigenenergies as a function
of R for two typical cases c < v and c > v. The two bottom
panels show the corresponding phase space portraits at a given
value of R ( � �0:05). The arrows on the fixed points indicate
the directions of their movements as R increases.
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arg N in the above discussion. We split off this overall
phase by writing  j � ei
�j; then �j belongs to the so-
called projective Hilbert space. For many physical prob-
lems, the new wave function varies cyclically in time, for
which one can introduce a geometric phase in general-
ization of Berry’s phase. From Eq. (1), we obtain
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For a linear quantum system, the second term is the same
as the energy [11], whose time integral gives the so-called
dynamical phase. The time integral of the first term,R
�
0 dt

PN
j�1�

�
j i

@
@t �j, gives an additional contribution to

the overall phase and is called the Aharonov-Anandan
phase [9]. For the nonlinear case, we continue to call it
the Aharonov-Anandan phase [13]. We show that this
geometric phase plays the role of classical action in the
canonical dynamics and is thus an adiabatic invariant.

Eigenstates.—We first consider adiabatic evolution
of eigenstates, which is defined by @

@ �
j
H � ; �;R� �

E�R� j �j � 1; . . . ; N�. Besides the ground state which
has obvious physical significance, higher eigenstates
(also called nonlinear coherent modes) can be prepared
experimentally [14]. The eigenstates correspond to ex-
tremum energy or fixed points of the classical dynamics
(2) at a given R [15]. For an elliptic fixed point, we expect
it to be able to follow adiabatically the control parameter
provided the latter changes slowly compared with the
fundamental frequencies of periodic orbits around the
fixed point. These frequencies can be evaluated by linear-
izing Eq. (2) about the fixed point [10] and are identical to
the Bogoliubov excitation spectrum of the corresponding
eigenstate. In linear quantum mechanics, these frequen-
cies are just the level spacings, so that breakdown of
adiabaticity occurs by level crossing. In the nonlinear
quantum problem, the fundamental frequencies are gen-
erally different from the level spacings, so that adiabatic-
ity can often be maintained even if the energy levels cross
as demonstrated below with a two-level model.

Nonlinearity in our quantum problem not only makes
different eigenstates nonorthogonal but also can produce
more eigenstates than the dimension N of the Hilbert
space. Some of these additional eigenstates correspond
to hyperbolic points in the classical dynamics, character-
ized by complex fundamental frequencies and strong
sensitivity to small perturbations. We thus expect that
such eigenstates are not able to follow adiabatically the
control parameter. The complex fundamental frequencies
correspond to a complex Bogoliubov spectrum on top of
the mean field solution, signifying spontaneous produc-
tion of quasiparticles. In practice, we need to traverse the
dynamical instability regime fast enough to avoid the
quasiparticle production and slow enough to avoid non-
adiabatic excitations [16].

As an illustration, we consider a nonlinear two-level
model,
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This model was proposed to describe the tunneling of
BEC in an optical lattice [17] or in a double-well potential
[18]. The parameter c characterizes the interaction
strength between atoms; v is the coupling strength be-
tween the two modes. The parameter R can be the Bloch
wave number or energy difference between the two wells.
We are interested in the tunneling between the energy
levels shown in the top panels of Fig. 1 when R is in-
creased slowly from the far negative end to the far posi-
tive end.

Following our general formalism, we choose the total
phase as 
 � arg 2 and introduce a pair of canonical
variables, q � arg 1 � arg 2 and p � j 1j

2. The total
energy of the system is H � v
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without the total phase takes the form �1 �
����
p

p
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1� p
p

. Then we have the equivalent classical
Hamiltonian as in Eq. (2),

H � v
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In Fig. 1, the structure of eigenenergy levels of
Eq. (4) is shown in the top panels while the phase space
orbits of the corresponding classical system (5) are
shown in the bottom panels. When c < v, there are only
two eigenstates and two fixed points. Since both f1 and f2
are elliptic with finite fundamental frequencies, the
corresponding quantum states are expected to be able to
follow adiabatically with R. This has been corroborated
by our numerical simulations.
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FIG. 2. Nonlinear tunneling of a system that is nonlinear in
an intermediate range of the parameter R. I’s and I0’s are the
occupation probabilities on different eigenstates, at the begin-
ning and the end of the tunneling process, respectively.
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When c > v, there are two more eigenstates, forming a
loop structure; in the phase space portrait, there appear
two more fixed points with one of them, f3, being hyper-
bolic. Because of this structure change, the adiabatic
evolution becomes very different here. First, the eigen-
state corresponding to f3 will not be able to follow the
adiabatic change ofR since f3 is hyperbolic. This has been
checked by our numerical integration of Eq. (4). Second,
the fixed point f1 can annihilate itself by colliding with
f3 as R changes slowly, leading to the breakdown of
adiabaticity of the tunneling as reported numerically in
Ref. [17]. Finally we notice that there is a level crossing
between f1 and f4 at R � 0; however, our calculation
shows that their fundamental frequencies are v	�cv�

2 �
1
1=2 � 0. This clearly illustrates our statement in the
general formalism that the fundamental frequencies are
not related to the level spacing in the nonlinear case.

Cyclic and quasicyclic states.—Compared with eigen-
states, adiabatic evolution of noneigenstates is in general
very complicated as the motions given by Eq. (2) may be
chaotic [15]. We choose to focus on the states around an
elliptic point, where the classical orbits are regular. Here
the motions are confined on the �N � 1�-dimensional
torus, and we may introduce a set of action-angle vari-
ables, I� �I1; I2; . . . ; IN�1�;�� ��1;�2; . . . ;�N�1� [10].
The angular variables change with time at frequencies
! � �!1; !2; . . . ; !N�1� while the actions I are con-
stants. More importantly, according to the classical adia-
batic theorem [10], the actions I are adiabatic invariants
in the sense that they remain constant even if the control
parameter R changes (slowly) in time. The existence of
these adiabatic invariants presents strong constraint on
the motion and guarantees a state initially close to an
eigenstate (elliptic point) to stay near it as the system is
changed slowly.

Furthermore, we can attach a physical meaning to
these adiabatic invariants in the effective classical de-
scription by making connection to the Aharonov-
Anandan phase of the states. The AA phase is defined
as the time integral of the first term in Eq. (3) for a
periodic orbit or a quasiperiodic state [19],

�AA�R� �
Z �

0
dt

XN
j�1

��
j i
@
@t
�j: (6)

We can rewrite it with the canonical variables �qj; pj� and
further with the action-angle variables,

�AA �
XN�1

j�1

Z �

0
pjdqj � I ��; (7)

where � � �!1�;!2�; . . . ; !N�1�� and � is a time period.
Therefore, the actions are related to the AA phase �AA,
which is an observable physical quantity [20]. In the
special case of N � 2, there is only one independent
action, so the AA phase is simply �AA � 2�I. This
simple connection can be expanded to the general case
of N > 2, where one can single out a particular cyclic
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state that involves only one action Ij. For this cyclic state,
we again have the simple relation �AA � 2�Ij.

How do the above adiabatic invariants connect to the
familiar notions in the standard linear quantum mechan-
ics? Consider the time evolution of a general state in a
linear quantum system for a given R,  j�t� �
 j�0�e

�iEjt; j � 1; . . . ; N, where Ej’s are the eigenener-
gies. This is a (quasi-)cyclic state with the projective
wave functions given by �j�t� �  j�0�e

�i�Ej�EN�t, j �
1; . . . ; �N � 1� and �N�t� �  N�0�. Its AA phase can be
computed with Eq. (6); after comparing with Eq. (7), we
immediately find that Ij � j j�0�j2. Therefore, in linear
quantum mechanics, these adiabatically invariant actions
Ij are nothing but the probabilities on the energy levels. In
this way, we have rederived the adiabatic theorem of
linear quantum mechanics [21].

The conservation of probabilities on the energy levels
can be generalized to the case where the system is non-
linear in an intermediate range of the parameter R
(Fig. 2). When the actions (AA phases) are conserved
during the entire process, the initial and final probabilities
on the energy levels must remain the same, Ij � I0j, be-
cause the system is linear at the beginning and end of the
process so the actions are just the occupation probabili-
ties. In the intermediate range where the nonlinearity is
present, the probabilities will change because the con-
served actions are not probabilities on the energy levels.

We now illustrate this important result using our two-
level model, where, at the two ends with jRj 
 c, the
nonlinear term can be ignored and the system is effec-
tively linear. For c < v, where all the fixed points are
elliptic, the fundamental frequency ! for the periodic
orbit remains finite and the AA phase (action) is con-
served [see lines (a) in the right panels of Fig. 3]. The
initial and final probabilities on each level are indeed the
same [Fig. 3(a)], although they oscillate in the intermedi-
ate range of the parameter where the system is nonlinear.
As the nonlinearity gets strong, the occurrence of tunnel-
ing begins to depend on the choice of the initial state. In
Fig. 3(b), where one starts with probability I � 0:1 on
level two, tunneling happens; however, in Fig. 3(c) where
one starts with probability I � 0:8 on level two, there is
no tunneling. The difference is whether there is collision
170404-3



FIG. 3. Left panels: Change of probabilities on the two levels
with R, which changes with rate " � 0:0001, for three differ-
ent cases. The right two panels show how the AA phases and
the fundamental frequencies change with R in these three
cases, respectively.
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with the hyperbolic point f3. In Fig. 3(b), the initial
noneigenstate falls on a periodic orbit surrounding the
fixed point f1, which will later collide with the hyperbolic
point f3, where the fundamental frequency drops to zero
and the AA phase has a finite jump [see lines (b) in the
right panels]. The jump height is proportional to the
tunneling probability. In Fig. 3(c), the initial state falls
on a periodic orbit around the fixed point f2, which will
not collide with f3.

In summary, we have generalized the quantum adia-
batic theorem to systems governed by the nonlinear
Schrödinger equation. Adiabaticity of an eigenstate re-
quires that the control parameters vary slowly with re-
spect to the Bogoliubov excitation frequencies.We further
show that the Aharonov-Anandan phase can serve as the
general adiabatic invariant, in analogy to the canonical
actions in classical mechanics. This finding provides an
important application of the Aharonov-Anandan phase
and is expected to be useful in guiding adiabatic manipu-
lation of the condensated atoms.
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