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We analyze the phase stability and the response of a mixture of bosons and spin-polarized fermions
in one dimension (1D). Unlike in 3D, phase separation happens for low fermion densities. The dynamics
of the mixture at low energy is independent of the spin-statistics of the components, and the modes are
essentially undamped.
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Binary mixtures of dilute quantum gases are a subject
of steadily growing interest initiated by the realization
of Bose-Einstein condensation (BEC) of alkali atoms [1]
and motivated by the quest for and subsequent experi-
mental realization of degenerate Fermi gas [2]. Strong
s-wave interactions that facilitate evaporative cooling of
bosons are absent among spin-polarized fermions due to
the exclusion principle; so fermions are cooled to degen-
eracy through the mediation of fermions in another spin
state [2] or via a buffer gas of bosons [3,4]. Degeneracy in
dilute gases can be understood better than that in liquid
helium due to weaker interactions and, thus, offers pros-
pects of detailed quantitative study of several interesting
phenomena in the physics of many-body quantum sys-
tems such as the Bardeen-Cooper-Schrieffer transition.

On another front, a new generation of BEC experi-
ments on surface microtraps [5,6] and experiments on
creating atomic waveguides [7] have generated interest
in quantum gases in lower dimensions. Effective 1D
and 2D BECs have been created, in which excitations
in the confined directions are energetically not allowed
[8]. BEC on optical lattices [9] are being actively studied;
the atoms at each lattice site can be in effective 1D.

It is therefore a natural step to bring these two exciting
developments together and consider binary mixtures of
quantum gases in effective 1D, with the possibility of
forming one-dimensional degenerate Fermi gases and fer-
mionic waveguides. Fermions in 1D have been the subject
of some seminal models in many-body quantum physics
[10], because they are theoretically more tractable than in
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3D. Now there is the possibility of testing these models
experimentally. Considerable recent theoretical work has
been done on Bose-Fermi mixtures (BFM) in 3D [11–14]
but little has been said about 1D systems. The goal of this
Letter is to study theoretically some of the properties of
binary mixtures of bosons and spin-polarized fermions
in an effective 1D configuration. In particular, we con-
sider their excitations and phase stability.

Model.—We consider a longitudinally homogeneous
1D mixture of Nb hard-core bosons of mass mb and
Nf spin-polarized fermions of mass mf at T � 0 K. A
natural choice of trap-geometry to consider such a
mixture is in a toroidal trap [15] with no external po-
tential along the circumference (of length L), but with
tight cylindrically symmetric harmonic confinement of
frequency !0 in the transverse direction. For the atoms
to have effective 1D behavior at T � 0 K, the ground
state energy of the transverse trapping potential has to
exceed the ground state energy of the bosons and the
fermions in 3D, i.e., �h!0 � 	b�3D� and �h!0 � 
f�3D�,
where	b�3D� � 4� �h2abnb�3D�=mb is the bosonic chemical
potential and 
f�3D� � �h2�6�2nf�3D��

2=3=2mf is the Fermi
energy of noninteracting fermions, both in 3D. A mea-
sure of the transverse spread of the atoms in the ring is
given by the single-particle ground state widths for the

transverse trap, rb�f� �
����������������������
�h=mb�f�!0

q
. A torus of high as-

pect ratio has L� rb�f�. We define twice the reduced
mass mbf � 2mfmb=�mf �mb�.

To describe the 1D BFM, we use an effective Hamil-
tonian for its longitudinal behavior in the toroidal trap
ĤH �
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f f: (1)
Here  ̂ b�f��x; t� are field operators for the longitudinal
degree of freedom and x is the circumferential spatial
coordinate. In assuming noninteracting fermions, we
neglected weak p-wave or higher binary interactions.
We also assume factorization of the transverse degrees
of freedom, justified in effective 1D [16] since the trans-
verse spatial profile is that of the single-particle ground
states for the trap potential regardless of the longi-
tudinal behavior or statistics. Integrating over the
transverse coordinates [16] gives the effective 1D
coupling strengths for the boson-boson and boson-
fermion interactions: gb � 2 �h!0ab and gbf � 2 �h!0abf,
with respective scattering lengths ab and abf. The linear
density operators are �̂�b�f��x; t� �  ̂ y

b�f��x; t� ̂ b�f��x; t�,
with spatially constant equilibrium expectations
 2003 The American Physical Society 170403-1



P H Y S I C A L R E V I E W L E T T E R S week ending
2 MAY 2003VOLUME 90, NUMBER 17
nb�f� � Nb�f�=L and fluctuation operators �̂��b�f��x; t� �
�̂�b�f��x; t� � nb�f�.

Phase stability in the static limit.—We first consi-
der the mixture in static equilibrium when the expec-
tations of the fluctuation operators are zero; the kinetic
energy of the bosons vanishes while the kinetic energy for
the fermions contributes the Fermi energy per particle

f � gfn

2
f=3, with gf � �h2�2=2mf and the Fermi wave

vector kf � �nf. In this case the total particle number is
fixed, so we take the ground state expectation of the
canonical Hamiltonian for the system and thus obtain a
simple expression for the total energy of a uniform mix-
ture of bosons and fermions at equilibrium,

Eu � L��1=2�gbn
2
b � �1=3�gfn

3
f � gbfnbnf	: (2)

Its derivatives with respect to the densities yield

	b � gbnb � gbfnf; 	f � gbfnb � gfn2f; (3)

the Thomas-Fermi equations for the chemical potentials.
The derivative with respect to L gives the pressure

p��@E=@L� �1=2�gbn2b��2=3�gfn3f�gbfnbnf: (4)

The second derivative condition for a stable minimum
with respect to small changes in the densities requires

nf 
 g2bf=�2gfgb� � 2a2bf=�
2abr2f; (5)

which puts a lower limit on the fermion density, opposite
to the constraint in 3D where the stability condition puts
an upper limit on the fermion density. The reason for the
difference is that the power law of the density dependency
of the Fermi energy changes with dimensionality. The
energy due to the Fermi pressure grows faster as a func-
tion of linear density in 1D than it does with increase in
bulk density in 3D; however, the boson-fermion interac-
tion energy behaves similarly in 3D and in 1D with
respect to bulk density and linear density, respectively;
thus, at higher fermion densities, the total energy in 1D is
more likely to be lowered if the fermions are spread out
over a larger volume mixed in with the bosons.

The stability criterion in (5) applies for small fluctua-
tions; we now analyze the general phase stability for a
BFM in 1D, as was done for 3D mixtures by Viverit et al.
[11]. A binary mixture can have at most two distinct
phases; we use subscripts i � 1; 2 to label the physical
quantities specific to each. The volume fractions of the
phases are ‘ � L1=L and 1� ‘ � L2=L and the ratio of
the densities in the two phases !b�f� � nb�f�;1=nb�f�;2. The
total energy for the phase-separated mixture is

Es�
X2
i�1

LiEi�
X2
i�1

Li

�
gb
2
n2b;i�

gf
3
n3f;i�gbfnb;inf;i

�
: (6)

Equilibrium between the phases requires
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p1�p2; (7a)

	b�f�;1�	b�f�;2; (7b)

	b�f�;i >	b�f�;j if nb�f�;i�0; (7c)

where the pressure and chemical potentials in each phase
are given by Eqs. (3) and (4) with the total densities
replaced by partial densities.We use the identity ‘nb�f�;1�
�1�‘�nb�f�;2�nb�f� in Eq. (2) to evaluate the energy Eu of
the uniform phase to compare with the energy Es of the
phase-separated mixture in Eq. (6).We do the comparison
by calculating ���Eu�Es	=L, using density measures
Cf�g2bf=gfgb for fermions and Cb�g3bf=gfg

2
b for bo-

sons. There are four possible ways of phase separation;
the feasibility of each is determined by the specific nature
of the conditions (7) and the principle of minimum en-
ergy. We now discuss each case, leaving out the algebra.

(i) Two pure phases: The fermions are all in one phase
and the bosons in the other, so we set nf;1 � nb;2 � 0. The
equilibrium conditions (7a) and (7c) constrain the partial
densities: nf;2 � 3Cf=4 and nb;1 � 3Cb=4. When those
conditions are used in Eqs. (2) and (6), they give � 

�1� ‘�‘2gFn

3
F;2=3 
 0, which means that the separated

phase has lower energy for all values of the volume
fraction ‘ 2 �0; 1	 and hence is energetically preferred
in the density regimes where phase equilibrium is pos-
sible, nf � �3=4��1� ‘�Cf and nb � �3=4�‘Cb.

(ii) A mixed phase and purely bosonic phase: The fer-
mions are all in one phase, nf;1 � 0, but there are bosons
in both phases. Equations (7a) and (7b) fix the fermion
partial density nf;2 � 3Cf=4, which satisfies the condi-
tion nf;2 � Cf imposed by the inequality of the fermion
chemical potentials 	f;1 
 	f;2. Then it follows from
	b;1 � 	b;2 that nb;1 � nb;2 � 3Cb=4.

On applying Eqs. (7a) and (7b) to Eqs. (2) and (6), we
find � � �1� ‘�‘2gFn

3
F;2=3 
 0, so that the separated

phase is energetically preferred in this case as well, in
the density regimes nf � �3=4��1� ‘�Cf and nb �
nb;2 � �3=4�‘Cb, which do not overlap with those of the
previous case.

(iii) A mixed phase and purely fermionic one: All the
bosons are in one phase, nb;2 � 0, while the fermions can
be in both phases. The phase equilibrium conditions re-
quire that the fermion density ratio !f 2 �0; 1	 and that it
satisfies the equation 3�nf;2=Cf��1� !f�

2 � 2�2� !f�.
This limits the fermion density in the second phase to
be Cf=2 � nf;2 � 4Cf=3. But Eq. (7a) and 	f;1 � 	f;2

imply � � ‘�1� ‘�2gF�nF;1 � nF;2	3=3 � 0, where the
inequality holds because !f � 1. The uniform mixture
will thus be energetically preferred for all values of ‘;
hence, this type of phase separation will not occur.

(iv) Two mixed phases: Both phases have fermions as
well as bosons. The three equations arising from the
equilibrium conditions (7a) and (7b) lead to an equation
for the fermion density ratio, �1� !f�3 � 0 with the only
solution !f � 1. Because 	b;1 � 	b;2, this implies that
the boson density ratio !b � 1. Thus, the only allowed
170403-2
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solution is when the entire system is uniform, and so there
is no phase separation of this type either.

The allowed phases for different linear densities are
plotted in Fig. 1; phase separation occurs for low fermion
densities, in qualitative agreement with Eq. (5). Taking
the bulk density to be nf�3D� ’ nf=�r2f, the criteria for
single phase nf >

3
4Cf and effective 1D 
f�3D� � �h!0

give the limits of fermion density for which bosons and
fermions in 1D can coexist in a single phase: a2bf=abr

2
f <

nf < 1=rf. Transverse trap widths rf � 1 	m achievable
currently would allow single phase mixtures for densities
up to nf�3D� � 1018 m�3, which was that of the coldest 6Li
samples in a recent experiment [17] that created a degen-
erate system of bosons (23Na) and fermions (6Li) in 3D.
Scattering lengths for alkali atoms are �1–10 nm, which
allows a range of few orders of magnitude of fermion
density where a stable uniform 1D BFM would form; this
range can be widened by strengthening the transverse trap
or reducing the boson-fermion scattering length. Unlike
in 3D, phase separation effects in 1D can be observed by
reducing the density, which is usually easier to do than
increasing it.

Dynamic response.—We now consider the dynamical
properties of the mixture. For weak interaction strengths
and low energy modes, we can use linear response theory.
We consider small density fluctuations of the bosons and
the fermions about equilibrium. The boson fluctuation can
be considered a density dependent perturbation for the
fermions and vice versa, so we have two coupled linear
equations for the Fourier transforms of the expectation of
the density fluctuations ��b�x; t� and ��f�x; t�,

��b�q;!� � )b�q;!�gbf��f�q;!�;

��f�q;!� � )f�q;!�gbf��b�q;!�;
(8)

with retarded density-density response functions

)�q;!� �
1

�h

X
n�0

jhnj�̂��y�q�j0ij2
�

2!n0

�!� i!�2 �!2
n0

�
: (9)

The small imaginary shift i! preserves causality and the
ground state j0i represents the Fermi sea for the fermions
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FIG. 1. Phase diagram for a mixture of bosons and fermions
in one dimension. The thin line corresponds to the linear
stability condition in Eq. (5).
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and the condensate for bosons. In the Bogoliubov approxi-
mation for the bosons the response function as well as the
quasiparticle spectrum in 1D have algebraic forms iden-
tical to those in 3D and are given by

)b�q;!� � �nbq2�=fmb�!2 �!2
b�q�	g; (10)

with !2
b�q�� �
q=�h�2��vbq�2, free quasiparticle energy


q� �h2q2=2mb, and sound velocity vb�
�������������������
gbnb=mb

p
. The

poles correspond to the energies of the collective modes,
undamped in the Bogoliubov approximation. The re-
sponse function for the fermions is that for free fermions,
which has a form in 1D quite distinct from that in 3D:

)f�q;!��
mf

2��h2q
ln

�
�!� i!�2�!2

��q�

�!� i!�2�!2
��q�

�
;

�h2!2
��q�� ��h4=4m2

f���kf�q�
2�k2f	

2:
(11)

The calculation leading from Eq. (9) to Eq. (11) is analo-
gous to that in 3D [18] with the Fermi sphere replaced by a
‘‘Fermi interval’’ ��kF;kF	. It is apparent that
Im)f�q;!��0 only if j!�j� j!j� j!�j.

The low energy, long wavelength modes are of particu-
lar experimental interest, so we do a Taylor expansion of
the expression (11) for )f for small values of q, but
keeping the ratio of the energy transfer to momentum
transfer !=q constant. The result is quite interesting:

)f�q;!� ’ �nfq
2�=fmf��!� i!�2 �!2

f�q�	g; (12)

with !2
f�q� � �
q= �h�2 � �vfq�2. If we replace the

Bogoliubov sound velocity with the Fermi velocity vb !
vf � �hkf=m, the real part of this limiting form is iden-
tical to the Bogoliubov response function, and the spec-
trum corresponding to their poles are identical in form.
This equivalence of the bosonic and fermionic density
fluctuations is a distinct property of 1D with no analog in
higher dimensions. Such an equivalence is not surprising
if one recalls the Luttinger liquid model of Haldane [19]
where the low energy behavior of quantum fluids in 1D
was shown to be independent of spin-statistics. However,
it is important to note that the fermionic response func-
tion that we consider above is that for free fermions, while
the Luttinger-Tomonaga [10] model assumes long range
interactions among the fermions. The absence of interac-
tion among fermions distinguishes the qualitative nature
of the fermionic excitations from the Bogoliubov modes,
despite the similarity in the low energy structure of the
response functions. The fermionic excitations are elemen-
tary excitations, whereas the Bogoliubov modes are col-
lective modes of the bosons for which the interactions
play a central role.

The similarity of the response functions at low energies
combined with the fact that homogeneous Bogoliubov
modes have the same form in 1D and 3D allows us to
directly apply the results obtained for spatially uniform
binary mixtures of bosons in 3D to the BFM in 1D. As an
example, we consider the normal modes of the BFM
170403-3
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determined by the vanishing of the coefficient determi-
nant of Eqs. (8), 1� g2bf)b)f � 0, which leads to an
expression for the normal mode velocities similar to
that for binary mixtures of bosons in 3D [20]

v2� �
1

2

2
4�v2b�v2f��

��������������������������������������������������
�v2b�v2f�

2 � 4g2bf
nfnb
mfmb

s 3
5: (13)

Here we have used the linear dispersions!b�f��q� ’ vb�f�q
for long wavelength modes. Hydrodynamic equations for
boson-fermion density fluctuations in the collisional re-
gime also give a similar expression for sound velocities
[12], but with the crucial difference that the fermion
sound velocity in that case is that of ordinary sound,
vf=

���
3

p
. In the long wavelength limit when q! 0, v2�

may become negative, implying an imaginary mode
frequency, a sign of a dynamic instability due to an
exponentially growing mode. The condition for v2� to
be non-negative leads to exactly the condition for phase
stability obtained earlier in Eq. (5) from energy consid-
erations. This dynamic instability associated with long
wavelength modes leads to phase segregation.

The frequencies corresponding to the original low
energy Bogoliubov phonons shift due to the interac-
tion with the fermions by !q � vbq ’ nfnbg2bfq

2=
�mbmf�v2b � v2f�	; the shift is positive for vb > vf and
negative for vb < vf, similar to the behavior in 3D [13].
Such low energy modes in 3D undergo Landau damping if
vb < vf. In the 1D mixture these modes are undamped
for both vb > vf and vb < vf as the imaginary part of
the fermionic response function, that leads to damping,
vanishes due to the identity Imf�!� i!��1g � ����!�.
This is a consequence of the low energy similarity of the
fermionic response with the Bogoliubov response in 1D.

When we consider modes with higher momenta where
the exact fermion response function has to be used, there
will be Landau damping even in 1D but only for mode
frequencies in the range j!�j � j!j � j!�j; only in this
range is the argument of the logarithm in Eq. (11) nega-
tive and yields an imaginary component. For weak inter-
action the damping rate for the normal modes can be
calculated from their defining equation g2bf)b)f � 1 to
be +�mcbg2bf=4 �h

2gb. The key distinction is that the rate
is independent of the mode; in 3D the damping is linearly
dependent on the momentum of the mode [13].

The exact fermionic response function (11) in 1D has
several features distinct from 3D. For zero energy transfer
)f�q; 0� has a logarithmic divergence at q � 2kf due to
perfect nesting, whereas in 3D the derivative of the re-
sponse function is divergent, which leads to Friedel os-
cillations. In 1D BFM, the divergence of response
function leads to periodic density variations of the fer-
mions of period 2kf associated with the formation of
coherent superposition of particle-hole pair states called
the Peierls channel [21]. Because of the coupling with
170403-4
fermions, the bosons acquire a similar periodicity but out
of phase with the fermion density modulation [22].

In conclusion, we have studied the phase stability of a
boson-fermion mixture in 1D and demonstrated that
phase separation would occur at low fermion densities, a
behavior opposite to that in 3D. This means that phase
separation effects may be studied at densities easier to
achieve than in 3D. The regimes of coexistence of bosons
and fermions in the same space are within the reach of
experimental capabilities, and there is the exciting pros-
pect of creating degenerate fermions in 1D. Also we have
shown that the low energy density-density response of
free fermions is identical in form to that of weakly in-
teracting bosons; this means that binary mixtures will
have similar normal modes regardless of whether the
components are bosons or fermions. These modes are un-
damped at low momenta. Away from the low energy re-
gime, the similarity of response functions does not hold.
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