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Motion of an Adhesive Gel in a Swelling Gradient: A Mechanism for Cell Locomotion
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Motivated by the motion of nematode sperm cells, we present a model for the motion of an adhesive
gel on a solid substrate. The gel polymerizes at the leading edge and depolymerizes at the rear. The
motion results from a competition between a self-generated swelling gradient and the adhesion on
the substrate. The resulting stress provokes the rupture of the adhesion points and allows for the motion.
The model predicts an unusual force-velocity relation which depends in significant ways on the point of
application of the force.
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duced phenomenologically. stresses in the gel that become large at the rear part and
Many cells are able to crawl on a solid substrate to
which they adhere. This motion involves, in general, three
processes: the formation and protrusion of a thin lamelli-
pod in front of the cell, the adhesion of the lamellipod
to the substrate, and its retraction at the rear, pulling the
cell forward. The formation of the lamellipod involves
the polymerization of cytoskeletal filaments and their
cross-linking near the membrane. Motion generation re-
quires a symmetry breaking often associated with the
treadmilling of the cell cytoskeleton (the continuous
asymmetric polymerization at the leading extremity of
the gel and depolymerization at the rear). Typical ex-
amples for crawling cells are the motion of fibroblast cells
or fish epidermal keratocytes that have been studied in
detail. In many cells the cytoskeleton is an actin net-
work and the motion generation involves a complex in-
teraction between actin, myosin II motors, and many
other proteins [1–3].

From a point of view of physics, cell motion is closely
related to the motion of an elastic gel. Spontaneous
motion of gels has been studied in several contexts. A
mechanism has been proposed where a gel rolls on a
substrate without slipping; the gel is not treadmilling in
this case [4]. In order to explain the motion of the bacte-
rium Listeria which is propelled by formation of an ac-
tin gel comet, a description has been proposed which is
based on the interplay of gel elasticity, polymerization
on the surface of the bacteria, and depolymerization at
the outer surface of the gel [5]. The coupling between
polymerization and motion is due to the stress devel-
oped between the actin gel and the bacterium. Bio-
mimetic experiments on the motion of small colloidal
spheres induced by an actin comet have been per-
formed to test these ideas [6]. More recently, Bottino
et al. [7] have described the crawling of nematode
sperm cells on a surface. The cytoskeleton is repre-
sented by a gel which is treadmilling and adhering to
the substrate. The polarity of the cell leads to a pH
gradient that subsequently induces a gradient in internal
tension and adhesion to the substrate which are intro-
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Ascaris nematode sperm cells provide an example of
motion of a treadmilling gel in a swelling gradient. The
motility of these cells has been thoroughly studied ex-
perimentally [8,9]. The cytoskeleton mostly consists of an
apolar protein, major sperm protein (MSP), that similarly
to actin polymerizes to form filaments which can be
cross-linked to form a gel [10]. The moving cell forms a
thin lamellipod on the substrate and the cell body is
dragged behind the lamellipod. There is convincing evi-
dence that polymerization of the MSP network proceeds
at the advancing edge of a motile cell [11,12]. Depoly-
merization occurs in the vicinity of the cell body. ATP
is hydrolyzed in the polymerization process but mo-
lecular motors apparently do not play a role for motility.
The local pH strongly influences the polymerization and
depolymerization of the MSP network [13]: an increase
of pH enhances the polymerization and a decrease
of pH provokes depolymerization of the network. It has
been proposed that an influx of protons in the cell body
creates a pH source which leads to a pH gradient and
thus an asymmetry between the front and the rear of the
cell [14].

The aim of the present Letter is to describe on very
general physical grounds the motion of an isotropic elastic
gel adhering on a surface by considering the interplay
between a self-generated concentration field (pH) that
creates a gradient in the gel properties and the adhesion.
In order to illustrate the main principles of motion of an
adhesive gel in a swelling gradient, we use simplified
assumptions. We assume that the main effect of the pH
is to change the local equilibrium swelling of the gel and
that the advancing gel is more contracted at the rear (our
mechanism is, however, more general and does not de-
pend on the sign of the gradient); we furthermore assume
that the gel adheres to the substrate by localized adhesion
points and that the adhesion is strongly irreversible. This
implies that the adhesion points are broken if they are
subject to a constraint that exceeds a threshold. Using
general elasticity theory, we show that the combination of
adhesion and an equilibrium swelling gradient generates
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provoke a rupture of the adhesion points. For the sake of
simplicity, we use a two-dimensional model that consid-
ers only one dimension in the direction of motion and the
direction transverse to the plane of motion.

Consider a thin treadmilling gel in a concentration
gradient (pH). The situation sketched in Fig. 1 involves
a gel of small thickness h that adheres on the substrate
over a length L� h. Behind the adhering part, there is
a nonadhering part of the gel of length L0. The pH
gradient is stationary in the reference frame of the mov-
ing gel. The gel forms at the leading edge by polymer-
ization and it depolymerizes at the rear. In the following,
we use the state of the gel formed by polymerization as
the reference state for the quantification of elastic defor-
mations: in this state, two points connected by a vector dx
are at a distance ds20 � �ijdxidxj. As the polymerization
proceeds, each point of the gel is transported by the
treadmilling process inside the moving gel and displaced
by a vector u with respect to the substrate. The gel under-
goes elastic deformations resulting in changes in the
distance between the two points, which becomes ds2 �
gijdxidxj, where gij � �ij � 2�ij is the metric tensor and
�ij �

1
2 ��@ui=@xj� � �@uj=@xi�� is the displacement gra-

dient (which should not be confused with the strain tensor
defined below) [15]. In the reference frame of the gel, a
given volume element is transported toward low pH
regions as time goes on; its equilibrium swelling changes
and it tends to contract.We assume here for simplicity that
the equilibrium state of the gel at a given position (a given
pH) is isotropic. Swelling of the gel implies that the
distance between two neighboring points in the equili-
brium state is contracted by a factor � that depends only
on the local pH, as compared to the reference state in
which it was formed. The contraction factor � increases
from a value �< 1 at the rear of the gel to � � 1 at the
leading edge. The equilibrium state of the gel is the state
that a small gel element would reach if it were cut from
the rest of the gel while remaining in its environment. The
metric tensor in the local equilibrium state is g0ij � �2�ij.
The strain tensor is defined in a standard way as uij �
1
2 �gij 	 g0ij� � ��1	�2�=2��ij � �ij. The stress tensor in
the gel �ij can be calculated by assuming again that the
gel is isotropic and by introducing the two Lamé coef-
ficients � and � such that �ij � �ukk�ij � 2�uij [16].
The two Lamé coefficients may themselves depend on the
cell body
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FIG. 1. Schematic representation of the advancing cell on a
substrate. The lamellipod is filled by a gel that adheres in the
front region of length L. The length of the nonadhering part in
the back is L0. The thickness of the lamellipod is denoted h.
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local pH but, within a linear elasticity description, here
we ignore this variation. Our model for the motion is one
dimensional, x is the coordinate parallel to the substrate,
and z is perpendicular. The stress tensor can then be
written as �ij � ������1	�2��ij � ��kk�ij � 2��ij.
The second and third terms in this expression are the
standard contributions from linear elasticity theory; the
first term, related to the change in equilibrium swelling,
plays the role of the tensile stress introduced phenomeno-
logically by Bottino et al. [7].

Locally, the gel is at mechanical equilibrium and the
divergence of the stress tensor vanishes �@=@xj��ij � 0.
However, the gel does not relax to its equilibrium swel-
ling since it adheres on the surface. If we assume that the
adhesion occurs at the leading edge upon the formation of
the gel and that the adhesion points are frozen, the dis-
placement u vanishes at each point on the surface. The
upper surface of the gel is free and the two components of
the stress vanish there �iz�h� � 0.

The elastic deformation is calculated by solving the
force balance equation. Inside the gel, we use a lubrication
approximation [17]: the variation of the displacement
occurs over a distance h in the perpendicular direction
(z) much smaller than the distance L in the direction
parallel to the substrate, and the derivatives with respect
to z are thus much larger than the derivatives with respect
to x. We find [18]

ux �
���
�� 2�

d��2�x� 	 1�

dx

�
z2

2
	 2hz

�
;

uz �
���
�� 2�

��2�x� 	 1�z:

(1)

The deformation in the x direction at the free surface
(z � h) is negative towards the rear where the gel con-
traction is stronger. The ‘‘lubrication approximation’’ is
valid everywhere in the gel except in a region of size h
both at the leading edge and at the rear of the gel. The
distance to the edge of the gel is smaller than h in these
regions and the full elasticity equations must be solved. At
the rear, the gel tends to contract and the deformation
in the x direction becomes positive. The tangential stress
on the substrate (z � 0) at position x reads

�xz � 	2�
���
�� 2�

h
d��2 	 1�

dx
: (2)

The stress on the surface is negative as the gel is pulled
towards the rear part. The tangential stress on the surface
is balanced by the force per unit area exerted by the
adhesion points. If there is a uniform density �s of adhe-
sion points, the (positive) force exerted by each point on
the gel is f � 	�xz=�s.

So far, we have considered a flat piece of gel of length L
adhering on the substrate. At the rear of this piece over a
region with a size of the order of the thickness h, the signs
of both the deformation and the tangential stress change.
A precise calculation of the tangential stress in this region
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is difficult as it requires a complete solution of the elas-
ticity equations. However, one can get an estimate of the
stress using the macroscopic force balance on the adher-
ing gel along the substrate. The total force acting on the
gel vanishes. Since there are no external forces acting at
the upper surface and at the leading edge, the force
balance leads to

R
L
0 �xzdx � 0. If we neglect the variation

of the tangential stress in the region of size h where it is
positive, we obtain

�xz�x � 0� 
�
���
�� 2�

�1	�2�: (3)

The lubrication approximation is consistent if
hf�d��2 	 1��=dxg 
 1 and the stress pulling the gel
forward at the back of the gel is much larger than the
stress pulling it backwards in the front parts. The ten-
sion on the adhesion points is thus largest at the back of
the adhering part of the gel.

The adhesion points on the substrate have a finite
strength; they rupture if the force exerted by the gel is
too large. We consider here that adhesion is irreversible
and that there is a threshold for the rupture of an adhesion
point (that can be associated to several molecular bonds).
The rupture of each adhesion point can be viewed as the
escape of a particle from an attractive potential well under
the action of an external force (the gel stress). This prob-
lem has been studied in detail by several authors [19,20];
here we use the simplified approach that ignores thermal
fluctuations which amounts to characterizing each adhe-
sion point by the critical force fc that it can sustain (this
force could also, in principle, depend on pH and on the
time scale of the adhesion breakage [20]). The stress
exerted on the substrate by the gel being largest at the
back of the adhering gel, the adhesion points first break at
the back of the gel. The critical adhesion force, using
Eq. (3), defines a critical value of the tangential stress and
thus a critical value of the swelling ratio �c at which
adhesion bonds rupture. If we assume steady state motion,
the pH profile and thus also the profile of swelling ��x�
are stationary in the reference frame of the gel. The
critical adhesion force then imposes the distance L0 be-
tween the rear of the gel and the point where the adhesion
points rupture when ��0� � �c. An important point is
that our model does not require any adhesion gradient;
the adhesion rupture occurs at the point of strongest
tension.

We therefore obtain the picture sketched in Fig. 1 of a
gel adhering to the substrate in the front part over a length
L but not adhering in the rear over a length L0. The
adhering gel is under stress while the nonadhering gel
can relax to its local equilibrium swelling characterized
by ��x�. The picture is not changed qualitatively if the
critical force of the adhesion points fc depends on pH;
only the precise value of L0 changes. The concept of
rupture of discrete adhesion points implies that the mo-
tion is not steady but occurs in jumps. As the depolyme-
rization (and the polymerization) proceeds, the force on
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the most strongly loaded adhesion point increases further
until the critical value is reached, which provokes rupture.
When an adhesion point ruptures, the gel relaxes rapidly
and moves in the direction of motion. We implicitly
assume here that the rupture is irreversible: adhesion
points do not reform immediately and the kinetics of
formation of the adhesion points is slow compared to
the depolymerization kinetics.

The model is consistent if the internal stress is large
enough to induce rupture of the adhesion points (L0 must
be positive) and if the adhesion points can form (L must
be larger than h); otherwise, the gel gets stuck on the
substrate. Our simplified description relies on the use of a
two-dimensional model. For a real three-dimensional
gel, collective effects such as detachment waves similar
to those observed in friction problems could be expected
[21]. This will be the subject of future studies.

The gel adhering on a surface advances by polymer-
ization at the leading edge and depolymerization at the
rear. The motion is possible because of the rupture of the
adhesion points that we just discussed. The polymeriza-
tion reactions are far from equilibrium and we assume for
simplicity that only polymerization occurs at the leading
edge and only depolymerization occurs at the rear. The
free energy gain in these reactions (as well as the energy
required to maintain the pH gradient) are the sources of
energy for the motion. The dissipation is due mainly to
the gel retraction after the rupture of adhesion points.

In order to obtain a complete model for motion, we
have to characterize the polymerization and depolymer-
ization reactions. We denote the local concentration of
free monomers by ��x�, the local gel concentration by
c�x� � c0��x�	2, where c0 is the concentration at the
leading edge of the gel. The total number of monomers
in the gel mgel increases by polymerization and decreases
by depolymerization. The kinetics of these reactions is
written as

dmgel

dt

�������l
� hlkpc0�l;

dmgel

dt

�������r
� 	hrkdcr � 	kdhc0=�r:

(4)

Here the subscripts l and r refer, respectively, to the
leading edge of the gel where polymerization occurs
and to the rear where the depolymerization occurs. The
rate constants for polymerization kp and depolymeriza-
tion kd should be taken at the local pH (at the leading
edge for polymerization and at the rear for depoly-
merization). In a steady state, the gel mass is constant
and �dmgel=dt�jl � �dmgel=dt�jr � 0. In the reference
frame of the moving gel, the transport of the depoly-
merized monomers occurs by diffusion. In a steady
state, the flux J � Dm��r 	 �l�=�L� L0� is equal to
	�dmgel=dt�jr=h, (Dm being the monomer diffusion
constant). This fixes the monomer concentrations at
the leading edge and at the rear �l � kd=�kp�r� and
168102-3



P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2003VOLUME 90, NUMBER 16
�r � �lf1� kpc0�L� L0�=Dmg. The average velocity is
equal to the polymerization speed Vc0 �

1
h �dmgel=dt� or

V � kp�l � kd=�r: (5)

It is selected by the steady state polymerization or depo-
lymerization velocity. The total length of the gel L� L0

can be determined, assuming the total monomer mass m
(free and in the gel) is known.

The main result of this Letter is to show that a gel can
sustain a steady state motion via a treadmilling mecha-
nism even though it adheres to the substrate. No gradient
in adhesive strength is required for this to happen. The
two necessary ingredients are the existence of a critical
rupture force for the adhesive bonds and of a self-
sustained gradient leading to a change in the gel swelling.
The critical rupture force depends on the loading rate; the
actual value must therefore be determined taking the gel
speed into account. Furthermore, the existence of the
mechanism does not depend on the sign of the induced
gel swelling. The gradient that controls swelling has been
described in terms of a pH gradient, but any other gra-
dient in the gel could play this role. The differential
swelling of the gel could also result from the action of
molecular motors as will be discussed in a forthcoming
publication. We have presented a generic mechanism. Its
originality and robustness stem from the peculiar distri-
bution of the stresses at the gel-substrate interface. Over
most of the gel surface, the stress pulling on the adhesive
bonds is proportional to the gel thickness and the swelling
gradient. In a small region where the rupture occurs,
conventional elasticity tells us that it is of opposite sign
and larger by a factor L=h. For nematodes, L=h is of order
10–20 and there is a broad range of adhesive strength over
which the mechanism can work. This stress distribution
can be measured using techniques recently developed to
study the forces that cells develop on soft substrates [22].
A sign inversion of the stress as proposed here has been
observed on keratocyte cells [23].

It is very instructive to study within our framework
the situation where external forces act on the moving gel.
The effect of a force has a striking signature depending
on the position where the force is applied. Consider an
external force applied at position x along the substrate. If
the force is acting at a point inside the adhering gel, the
elasticity equations show that its effect is screened: the
gel deformation and the stress on the surface are changed
only over a region of size h (the gel thickness) around the
point of application; the force therefore has no effect on
the gel velocity, total length, and adhering length until it
reaches a bond rupture value. If the force is applied at the
front of the gel, its effect is also localized. The force,
however, tends to reduce the polymerization rate; the
behavior of the gel in a steady state strongly depends on
the depolymerization conditions at the rear of the gel. If
the force is applied at the rupture point, it must be added
to the macroscopic force balance in the gel which deter-
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mines the stress at the rupture point. In the presence of an
additional force, the adhering section of the gel is in-
creased and corresponds to an effective rupture force
fc � f=��ch�. Eventually, a force applied at the rear of
the gel and opposing the motion influences the depoly-
merization. In general, it increases the depolymerization
rate and according to Eq. (5) the velocity increases. The
gel in this case has a negative mobility. All these surpris-
ing predictions could be tested experimentally. We will
present a more detailed study of the effect of a force in a
future publication [18].
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