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The amount of information transmissible through a communications channel is determined by the
noise characteristics of the channel and by the quantities of available transmission resources. In
classical information theory, the amount of transmissible information can be increased twice at most
when the transmission resource is doubled for fixed noise characteristics. In quantum information
theory, however, the amount of information transmitted can increase even more than twice. We present a
proof-of-principle demonstration of this superadditivity of classical capacity of a quantum channel by
using the ternary symmetric states of a single photon, and by event selection from a weak coherent light
source. We also show how the superadditive coding gain, even in a small code length, can boost the
communication performance of the conventional coding technique.
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information theory, on the contrary, the capacity can be that the capacity would be log23 (bit/letter). However, the
In any transmission of signals at the quantum level,
such as a long-haul optical communication where the
signals at the receiving end are weak coherent pulses,
ambiguity among signals may be more a matter of non-
commutativity of quantum states, i.e., �̂�0�̂�1 � �̂�1�̂�0,
rather than any classical noise. Such states can never be
distinguished perfectly even in principle. This imposes an
inevitable error in signal detection even in an ideal com-
munications system. It was only recently that communi-
cation theory was extended into quantum domain to
include this aspect of ambiguity, and the expressions of
channel capacity were finally obtained [1]. Classical com-
munication theory [2] describes the special case of the
signals prepared in commuting density matrices.

For reliable transmission in the presence of noise, re-
dundancy must be introduced in representing messages by
letters, such as f0; 1g, so as to correct errors at the receiv-
ing side. The capacity is associated with the functional
meaning of this channel coding. Messages of k (bit) are
encoded into block sequences of given letters in length n
�>k�. The n� k (bit) redundancy allows one to correct
errors at the receiving side. For a channel with a capacity
C (bit/letter), it is possible [2] with the rate R � k=n < C
to reproduce k bit messages with an error probability as
small as desired by appropriate encoding and decoding in
the limit n! 1.

In extending the theory of capacity into quantum do-
main, primary concern is decoding of code words made
of noncommuting density matrices of letters. The optimal
decoding essentially uses a process of entangling letter
states constituting code words prior to the measurement
to enhance the distinguishability of signals. Such a pro-
cess is nothing but a quantum computation on code word
states. This is a new aspect, not found in conventional
coding techniques, and leads to a larger capacity. A
significant consequence of this so-called quantum collec-
tive decoding is that the capacity can increase even more
than twice when the code length is doubled. In classical
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increased twice at most. This feature, the superadditive
quantum coding gain [3–7], will be an important design
rule for communications at the quantum level.

The theory of capacity, however, generally gives no
guidance on how to construct codes that approach the
capacity. The practical problem is then to find good codes
for small blocks. Although several coding schemes have
been proposed to exhibit superadditive coding gain [4–7],
little attention has been paid to this topic so far, and no
experimental work has been reported yet. In fact, putting
these theoretical predictions into practice has been con-
sidered as a formidable task with present technologies. In
this Letter, we experimentally demonstrate the superad-
ditive coding gain by designing a coding circuit for a
quantum channel consisting of the ternary symmetric
states in a two-state system (qubit) of a single photon.

For binary nonorthogonal pure states, the most basic
signals, the superadditive coding gain is predicted [5] for
the minimum length, n � 2. The amount of gain, how-
ever, is so small to be observed experimentally, that is,
5:2	 10�4 (bit) as the net increase of retrievable infor-
mation per letter from the classical limit. For n � 3, the
net gain of 0.009 (bit) is predicted [6]; however, this
requires quantum gating more than ten steps with high
precision, which is something hard to do. Therefore we
consider the letter-state set that shows the largest amount
of the coding gain with the minimum code length, n � 2,
among the known codes [5–7].

Let us consider the set of the ternary letters f0; 1; 2g
conveyed by the symmetric states of a qubit system, �̂�x �
j xih xj with j 0i� j0i, j 1i��1

2j0i�
���

3
p
=2j1i, j 2i �

� 1
2 j0i �

���

3
p
=2j1i. Here fj0i; j1ig is the orthonormal basis

set. We assume that these states arrive at the receiver’s
hand through a noiseless transmission line. If the letter
states were prepared in commuting density matrices,
they could be distinguished perfectly, and log23 (bit) of
information (the maximum Shannon entropy of the set
f0; 1; 2g) could be faithfully retrieved per letter, meaning
 2003 The American Physical Society 167906-1



FIG. 1. Geometrical representation of the code word (dotted
arrows) and decoding (solid arrows) state vectors in a real
three dimensional space.
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states �̂�x here are noncommuting, and distinguishing
them is always associated with finite errors. In fact, the
average error probability can never be lower than 1=3
when they are used with equal prior probabilities [8].

The capacity is mathematically given [2] based on the
mutual information I�X:Y� which is defined from the in-
put variable X � fxg, the output variable Y � fyg, the
prior distribution fP�x�g of X, and the conditional proba-
bility fP�yjx�g of Y for given X. For the given channel
model [P�yjx�], the capacity is defined by C �
maxfP�x�gI�X:Y�. In the quantum context, on the other
hand, only the input variable X and the corresponding
set of quantum states f�̂�xg at the receiver’s hand are given.
The output variable Y is to be sought for the best quantum
measurement, i.e., a positive operator valued measure
f�̂�yg. The channel matrix elements are now given by
P�yjx� � Tr��̂�y�̂�x�, and one is to find the quantity [9]

C1 � max
fP�x�g

max
f�̂�yg

I�X:Y�: (1)

For the ternary set fj xig, the C1 was evaluated as 0.6454
(bit/letter) which is attained by using only two of the
three letters, say fj 0i; j 1ig, with equal probability 1=2
and by applying the binary measurement to form a binary
symmetric channel [10]. The quantity C1 is, however, not
the ultimate capacity allowed by quantum mechanics. In
fact, C1 specifies the classical capacity limit when the
given initial channel is used with classical channel cod-
ing [11]. It is this quantity that limits the performance of
all conventional communications systems.

Now let us consider a quantum channel coding of
length two. There are nine possible sequences in length
two coding of three letters. Peres and Wootters showed [4]
that I�X2:Y2� � 1:3690 (bit) of information can be re-
trieved in principle, which is greater than twice the
classical limit 2C1 � 1:2908 (bit). This can be achieved
in the following way; only three sequences j�xxi �
j xi � j xi �x � 0; 1; 2� are used as the code words
with equal probability 1=3, and they are decoded by the
measurement represented by the elements �̂�yy � j�yyi	

h�yyj �y � 0; 1; 2� which compose the orthonormal basis
expanding fj�xxig; that is,

j�00i �cj�00i �
s
���

2
p j�11i �

s
���

2
p j�22i; (2a)

j�11i � �
s
���

2
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s
���

2
p j�22i;

(2b)

j�22i � �
s
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s
���

2
p j�11i � cj�22i;

(2c)

where c � cos �2 � �
���

2
p

� 1�=
���

6
p

, and s � sin �
2 �

�
���

2
p

� 1�=
���

6
p

(� ’ 19:47�). Figure 1 shows a geometri-
cal representation of Eq. (2). The superadditive coding
gain is I�X2:Y2�=2� C1 � 0:0391 (bit/letter).

To demonstrate this gain, we must be able to entangle
two letter states at the receiver’s hand prior to a measure-
167906-2
ment. Unfortunately quantum gating operations demon-
strated to date are not precise enough to observe the small
quantum coding gain. Therefore our method for proof-of-
principle demonstration is based on the use of two physi-
cally different kinds of qubits of a single photon. The first
and second letters of a code word are drawn from the
ternary letter-state sets made of a polarization and a
location qubit, respectively. Then entangling the polar-
ization and location degrees of freedom of a photon can be
performed by linear optical components with very high
accuracy. The polarization qubit consists of the horizontal
jHi and vertical jVi polarization states of a single photon.
The location qubit for the second letter is realized by
guiding the polarization qubit into two different paths A
and B through a polarizing beam splitter (PBS) which
reflects the vertical polarization and transmits the hori-
zontal polarization. Thus, the length two coding space is
spanned by the two orthonormal basis sets [12]

j00i � j0iP � j0iL � jHiA � jvacuumiB; (3a)

j01i � j0iP � j1iL � jvacuumiA � jHiB; (3b)

j10i � j1iP � j0iL � jViA � jvacuumiB; (3c)

j11i � j1iP � j1iL � jvacuumiA � jViB: (3d)

The code word states j�xxi � j xiP � j xiL are repre-
sented in this product space. Thus the increase in resour-
ces in our coding format is due to doubling the spatial
resource which is analogous to doubling the transmission
bandwidth, as opposed to doubling the number of polar-
ized photons. We want then to observe the increase more
than double the amount of information transmitted.

An optical circuit for this coding is shown in Fig. 2(a).
The angles of the three half wave plates (HWPs) �’s are
chosen as ��0; �1; �2� � �0�; 0�; 0��, �30�;�30�;�15��,
and �30�; 30�; 15�� for j�00i, j�11i, and j�22i, respec-
tively. This decoding circuit is derived with slight modi-
fications from a general circuit design of Fig. 2(b), which
can be applied to any physical qubits. The received code
word is decided to be either of j�00i, j�11i, or j�22i
according to the detection of a photon by the avalanche
photodetector APD0, APD1, or APD2, respectively.
167906-2
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FIG. 3. Top: histogram of photon counts for the channel ma-
trix elements P�yyjxx� corresponding to the maximum mutual
information. Bottom: measured (diamonds) and theoretical
(solid curve) mutual information as a function of the offset
angle of the code word state set fj�xxig from the decoder state
set fj�yyig around the vertical axis in Fig. 1. The dotted curve
is just a guide for the eyes. The theoretical C1 and accessible
information IAcc are shown by the dashed and one-dotted lines,
respectively [10]. The square represents the experimental C1.
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FIG. 2. (a) Encoding and decoding circuits. The angles of the
HWPs, �0, �1, and �2 are chosen as described in the text, and
�A � ��=2 � �9:74� and �B � �45�. (b) Quantum circuit
to realize the collective decoding by fj�yyig, which can be
applied to any physical qubits. A received code word state is
first transformed by the five controlled gates and is then
detected by a standard von Neumann measurement on each
letter. The open circle indicates conditioning on the control
qubit being set to zero, and Q̂Q�’� � R̂Ry�’��̂�z, and � � 19:47�.
Other nomenclature follows Ref. [13]. (c) Circuit for separable
(classical) decoding for C1.
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In our experiment, the cw light from a He-Ne laser
at the wavelength of 632.8 nm with 1 mW power is
strongly attenuated such that about 10�2 photons exist
on average in the whole circuit. The signal photons are
guided to the Si APDs whose quantum efficiency and
dark count are typically 70% and 100 (count=sec), respec-
tively, through a multimode optical fiber with coupling
efficiency of about 80%. In this setup, the mutual infor-
mation is evaluated by constructing the 3-by-3 channel
matrix �P�yyjxx� � jh�yyj�xxij

2� from a statistical data
of single-photon events detected by either of the three
APDs conditioned on an input code word j�xxi. The
mutual information thus obtained measures the ratio of
number of bits retrieved per number of total photon
counts. This allows us to simulate communications of
‘‘pure’’ code word states of two letters by sending and
detecting the photons one by one through the channel.
The error performance is then determined only by the
noncommutativity of the signal states, imperfect align-
ment of the whole interferometer, and the dark count of
the APDs.

Each polarization Mach-Zehnder interferometer must
be adjusted simultaneously at a proper operating point.
This is done by using a bright reference beam and Piezo
transducers with low noise voltage sources. The visibility
of the whole interferometer is typically 98%. Once the
circuit is adjusted, the reference beam is shut off. The
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signal light is then guided into the encoder and decoder.
Photon counts are measured for 5-sec duration. This
procedure is repeated for each code word, composing a
full sequence of measuring the channel matrix. The tem-
poral stability in this sampling mode corresponds to the
relative path length change within 3 nm for at least more
than 200 sec, which causes the error in mutual informa-
tion within �0:005 (bit).

An example of the channel matrix measured is shown
as a histogram in Fig. 3. Ideally, the diagonal and off-
diagonal elements must be c2 � 0:9714 and s2=2 �
0:0143, respectively. The total events counted for 1 sec
is of order 106, while the average count for the off-
diagonal elements is about 1:9	 104. The background
photons amount to about 300 (count=sec). Including
dark counts, the total background photon count is 2% of
the average count for the off-diagonal elements. The
mutual information is evaluated as I�X2:Y2� � 1:312�
0:005 (bit). For experimental clarity, we measured the
variation of the mutual information when the code word
state set fj�xxig is rotated with respect to the decoder
state set fj�yyig around the vertical axis in Fig. 1. The
result is shown in Fig. 3. The gap between the data points
(diamonds) and the ideal curve (solid curve) is mainly
attributed to the imperfection of the PBSs. Fluctuation of
the data points is mainly due to thermal drifts. The
167906-3



TABLE I. Error exponent E�R� of QCHC and ACC.

R (bit/letter) E�R� of QCHC E�R� of ACC

0.1 0.842 0.315
0.62 9:753	 10�2 5:218	 10�4
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corresponding error bars [��0:005 (bit)] are about the
same size of the diamonds. The measured mutual infor-
mation per letter, 0:656� 0:003 (bit/letter), is clearly
greater than the classical theoretical limit C1 � 0:6454
(bit/letter), which is the level shown by the dashed lines.
The white square represents the experimental C1, 0:644�
0:001 (bit/letter). This is measured by the circuit for
classical decoding of Fig. 2(c), which does not entangle
the polarization and location qubits. The retrieved infor-
mation can never exceed 2C1. Our results clearly show
that when an appropriate quantum circuit for entangling
the letter states is inserted in front of the separable
decoding, one can retrieve information more than twice
per letter.

The superadditive coding gain in small blocks is not
only valuable as a proof-of-principle demonstration but
also of practical importance in quantum-limited commu-
nications. Even a two-qubit quantum circuit like Fig. 2(b)
is useful in boosting the performance of a classical de-
coder. It can be shown that the decoding error can be
greatly reduced by inserting the quantum circuit in front
of the classical decoder. The quantum circuit processes a
received code word state quantum collectively prior to
converting it into a classical signal.We call such a scheme
quantum-classical hybrid coding (QCHC). The theoreti-
cal error exponents [2] of QCHC and all-classical coding
(ACC) in the ternary letter-state case are listed in Table I
for low and high transmission rates R. The improvement
is more drastic in the higher rate limit. For the rate R �
0:62 (bit/letter) (96% of C1), it is possible to reduce the
decoding error as Pe � 2��n=2�E�R� � 2�0:0488n by an ap-
propriate classical coding with the composite letters
f00; 11; 22g assisted by the pairwise quantum decoding.
To achieve a standard error-free criterion Pe � 10�9,
QCHC requires the code length n � 614 (307 composite
letter pairs), whereas ACC typically needs n � 57 300.
As codes get longer, the complexity of the decoder, such
as the total number of arithmetic operations, increases
and eventually limits the effective transmission speed.
For some asymptotically good codes, the total number of
arithmetic operations is evaluated [14] to be typically of
order �n logn�2. Then the reduction of code length at-
tained by QCHC will be practically significant in the
trade-off between performance and decoding complexity.
This suggests a useful application of small scale quantum
computation.

The superadditive quantum coding gain should even-
tually be applied to more practical resources such as
optical pulses of coherent states, especially, heavily at-
tenuated coherent states fj"kig of phase-shift and/or
amplitude-shift keying. Unlike our channel model of
single-photon polarization and location modes, one
must be able to entangle weak coherent pulses with re-
167906-4
spect to the degrees of phase and/or amplitude. This is
another big challenge.
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