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Unconditionally Secure Key Distribution Based on Two Nonorthogonal States
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We prove the unconditional security of the Bennett 1992 protocol, by using a reduction to an
entanglement distillation protocol initiated by a local filtering process. The bit errors and the phase
errors are correlated after the filtering, and we can bound the amount of phase errors from the observed
bit errors by an estimation method involving nonorthogonal measurements. The angle between the two
states shows a trade-off between accuracy of the estimation and robustness to noises.
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quantum information, such as the entanglement distilla-
tion protocol (EDP) [7] and the Calderbank-Shor-Steane

include a bit error, represented by the subspace spanned
by fj0ziAj1ziB; j1ziAj0ziBg, and a phase error, represented
Quantum key distribution (QKD) provides a way to
share a secret key between two parties (Alice and Bob)
with negligibly small leakage of information to an eaves-
dropper (Eve). One of the simplest of such protocols is
called B92 [1], which is based on the transmission of only
two nonorthogonal states. For a qubit channel between
Alice and Bob, this protocol proceeds as follows. Alice
randomly chooses a bit value j and prepares a qubit in
state j’ji � �j0xi � ��1�j�j1xi, where 0<�< 1=

���
2

p
,

� �
���������������
1� �2

p
, and fj0xi; j1xig is a basis (X basis) of the

qubit. She sends the qubit through the channel to Bob,
who performs a measurement MB92 with three outcomes
j0 � 0, 1, ‘‘null.’’ The measurement MB92 involves the
projection measurement on the basis fj’ji; j’jig with
randomly chosen j and is defined by the POVM (posi-
tive operator valued measure) F0 � j’1ih’1j=2, F1 �
j’0ih’0j=2, and Fnull � 1� F0 � F1, where j’ji �

�j0xi � ��1�j�j1xi is the state orthogonal to j’ji.
When the outcome is j0 � null, Bob announces that to
Alice and they discard the event. Otherwise, they take
notes of their bit values j and j0, which should coincide in
the absence of channel noises and Eve’s intervention.
Repeating this procedure many times, Alice and Bob
each obtain a sequence of bits. Then they convert the
sequences into a shared secret key through public dis-
cussions. Intuitively, the security of this protocol is based
on the fact that Eve cannot discriminate two nonor-
thogonal states deterministically.

Although the QKD protocols themselves are simple, it
is quite hard to prove the unconditional security, i.e.,
security against an adversary able to perform any opera-
tion allowed by quantum mechanics such as interacting
all of the transmitted qubits jointly to a big probe system.
This task has been accomplished [2] for the BB84 proto-
col [3], which involves four states forming two conjugate
bases. Subsequent proofs [4–6] have provided us more
than a basic claim of security, including a beautiful inter-
play [5,6] between QKD and other important protocols in
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(CSS) quantum error correcting codes [8]. It is natural to
ask about the unconditional security of the B92 protocol,
which is conceptually the simplest of the QKD protocols.
In contrast to BB84, it involves a free parameter �
representing the nonorthogonality. The analyses of the
B92 protocol are hence expected to give us an idea about
how the nonorthogonality is related to the ability to
convey secret information. Since the security proofs of
BB84 rely on the symmetry of the protocol which is not
shared in B92, it is not a trivial task to modify it for B92,
except for the limiting case of jh’0j’1ij2 � 1=2 [9].

In this Letter, we give a proof of the unconditional
security of the B92 protocol for qubit channels, applicable
to any amount of nonorthogonality �. We show that the
B92 protocol is, from Eve’s point of view, identical to an
EDP initiated by a local filtering [10]. The security is then
established by proving that the EDP is almost always
successful. We also develop a method to estimate an error
rate by measuring randomly chosen samples on a differ-
ent basis, which plays an important role in the proof.

We first introduce a protocol involving EDP, which is
then shown to be reduced to the B92 protocol. We as-
sume that Alice initially prepares a pair of qubits AB in
the state j	iAB � �j0ziAj’0iB � j1ziAj’1iB�=

���
2

p
, which

is nonmaximally entangled. Here the Z basis fj0zi; j1zig
of a qubit is related to the X basis by jjzi � �j0xi �
��1�jj1xi�=

���
2

p
. Alice sends Bob the qubit B through a

quantum channel. Suppose that Bob performs a ‘‘local
filtering operation’’ on qubit B, described by the Her-
mitian operator Ffil � �j0xiBh0xj � �j1xiBh1xj. When
the state of AB was , the qubit B passes the filter-
ing with probability p � Tr��1A � Ffil�2�, resulting in
the filtered state ��1A � Ffil��1A � Ffil��=p. When the
channel is noiseless and Eve does nothing, this process
is just the Procrustean method mentioned in [11]: the
filtered state should be the maximally entangled state
(EPR state) j��i � �j0xiAj0xiB � j1xiAj1xiB�=

���
2

p
, since

the initial state is also written as j	iAB � �j0xiAj0xiB �
�j1xiAj1xiB. When noise is present, the filtered state may
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by the subspace spanned by fj0xiAj1xiB; j1xiAj0xiBg. In
parallel to the protocols for BB84 [5,6], we can consider
the following protocol that will work in the presence of
noise.

Protocol 1.—(1) Alice creates 2N pairs in the state
j	i�2NAB , and she sends the second half of each pair to Bob
over a quantum channel. (2) By public discussion, Alice
and Bob randomly permute the position of 2N pairs of
qubits. (3) For the first N pairs (check pairs), Alice
measures her halves on the Z basis, and Bob performs
measurement MB92 on his halves. By public discussion,
they determine the number nerr of errors in which Alice
found j0zi and Bob’s outcome was 1, or Alice found j1zi
with Bob’s outcome 0. (4) For the second N pairs (data
pairs), Bob performs the filtering Ffil on each of his
qubits and announces the total number nfil and the posi-
tions of the qubits that have passed the filtering. (5) From
nerr and nfil, they estimate an upper bound for the number
of bit errors nbit, and an upper bound for the number of
phase errors nph, in the nfil pairs. If these bounds are too
large, they abort the protocol. (6) They run an EDP that
can produce nkey nearly perfect EPR pairs if the estima-
tion is correct. (7) Alice and Bob each measure the EPR
pairs in the Z basis to obtain a shared secret key.

For the same reason as in the proofs of BB84 [5,6], if
the estimation in step (5) is correct except for a proba-
bility that becomes exponentially small as N increases,
the final shared key is essentially secure. Intuitively, this
comes from the fact that Eve has no clue on the outcomes
of a measurement performed on an EPR pair, since it is
in a pure state by definition. We will soon show how to
estimate the upper bounds for the errors in step (5).
Before that, we show that Protocol 1 can be reduced to
the B92 protocol.

According to the discussion by Shor and Preskill [6],
we can use a one-way EDP based on CSS codes in step (6).
Then, they have further shown that the whole extraction
process of the nkey-bit final secret key from the noisy nfil
pairs in steps (6) and (7) can be equivalently accom-
plished by Z-basis measurements directly performed on
Alice’s and Bob’s qubits of the nfil noisy pairs, followed
by a public discussion. Hence, without affecting the se-
curity, we can assume that Alice performs Z-basis mea-
surements immediately after she has prepared the state
j	iAB and that Bob performs Z-basis measurements im-
mediately after he has performed the filtering. Protocol 1
is thus reduced to a prepare-and-measure protocol. Now,
note the following relation for j0 � 0; 1, which is easily
confirmed:

Ffiljj0ziBhj0zjFfil � Fj0 : (1)

This implies that the filtering followed by the Z-basis
measurement is, as a whole, equivalent to the measure-
ment MB92. Hence in the reduced protocol Alice simply
sends j’0i and j’1i randomly, and Bob performs MB92

on all of the received qubits, which completes the reduc-
tion to B92.
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The estimation in step (5) can be done as follows. The
number of bit errors nbit could be determined if Alice and
Bob exchange their measurement results in the Z basis.
But this is the same process as the one performed on
the first N pairs to obtain nerr, due to relation (1). Thanks
to the random permutation in step (2), the check pairs
are regarded as a classical random sample from the 2N
pairs. Then, from a classical probability estimate, we may
assume

jnbit � nerrj � N�1: (2)

For any strategy by Eve, the probability of violating this
inequality is asymptotically less than exp��N�21�.

The estimation of the phase errors is far more compli-
cated. To do this, we derive several inequalities by assum-
ing gedanken measurements that are not really done in
the Protocol 1. The number of phase errors nph could be
determined if Alice and Bob measure the nfil pairs in the
X basis just after step (4). Since the filtering operator Ffil
is also diagonal in the X basis, nfil and nph could also be
determined by another measurement scheme, in which
Alice and Bob perform X-basis measurements first, and
then Bob applies the filtering Ffil. Note that this filtering
can be done classically by Bernoulli trials since the out-
comes of the X-basis measurements are available. This
new scheme also produces the numbers nij�i; j � 0; 1� of
pairs found in state jixiAjjxiB. Since nij and nfil (nph) are
related by Bernoulli trials, we have

j�2�n00 � n10� � �2�n01 � n11� � nfilj � N�2; (3)

j�2n10 � �2n01 � nphj � N�3; (4)

which are violated with probability asymptotically less
than exp��2N�22� and exp��2N�23�, respectively.

Next, recall the fact that neither the noisy channel nor
Eve can touch the qubits held by Alice. This implies that
the marginal state of Alice’s data qubits before the mea-
surements should be �N

A , where A � TrB�j	iABh	j� �
�2j0xiAh0xj � �2j1xiAh1xj. We can thus regard n10 � n11
as a result of a Bernoulli trial, obtaining

j�2N � �n10 � n11�j � N�4 (5)

with probability of violation asymptotically less than
exp��2N�24�.

Let us switch to the measurement on the check
pairs (the first N pairs). The element of POVM corre-
sponding to the error in step (3) is given by �err �

�j�11ih�11j � j�01ih�01j�=2, where j�11i � �j0xiAj0xiB�
�j1xiAj1xiB and j�01i � �j0xiAj1xiB � �j1xiAj0xiB. This
is readily derived from the relation

���
2

p
jjziAj’jiB �

j�11i � ��1�jj�01i. Let us add two more states, j�00i �
�j0xiAj0xiB � �j1xiAj1xiB and j�10i � �j0xiAj1xiB �
�j1xiAj0xiB, to form a basis. While nerr is determined
from local measurements in step (3), the same outcome
could be obtained by performing globally the complete
measurement on the basis fj�ijig, followed by a Bernoulli
167904-2
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trial with probability 1=2. Let mij be the number of pairs
found in j�iji. Then we have

j�m11 �m01�=2� nerrj � N�5; (6)

which is violated with probability asymptotically less
than exp��2N�25�.

Since fj�01i; j�10ig and fj0xiAj1xiB; j1xiAj0xiBg span the
same subspace, we can relate m10 �m01 and n10 � n01 by
the classical probability estimate as in Eq. (2):

j�m10 �m01� � �n10 � n01�j � N�6; (7)

which is violated with probability asymptotically less
than exp��N�26�. We further relate m01=�m01 �m10� to
n01=�n01 � n10�, but we can no longer apply classical
arguments here, since j�01i and j0xiAj1xiB are nonor-
thogonal. We thus extend the classical probability esti-
mate to the quantum case in the following.

The problem to be considered is as follows: M � M0 �
M1 qubits are prepared in a state, and the positions of
qubits are then randomly permuted. Then, each of the
first M0 qubits is measured on an orthogonal basis
fj0; 0i; j0; 1ig, and the rest of the M1 qubits are measured
on another basis fj1; 0i; j1; 1ig. What we ask is the bound
for the probability p��0; �1�, with which M0�0 qubits
are found to be in j0; 1i and M1�1 qubits are found to be
in j1; 1i. Let  be the state after the permutation, and
j�i �

N
b;j jb; ji

�nb;j , where nb;1 � Mb�b and nb;0 �
Mb�1� �b�. Then, the probability is given by

p��0; �1� � h�jj�i
Y
b�0;1

Mb!

nb;0!nb;1!
(8)

The technique used [12] for problems involving inde-
pendently and identically distributed quantum sources is
also useful here, although in our case the state  may be
highly correlated. The Hilbert space for the M qubits,
H �M, can be decomposed as H �M �

L
�U� �V �

such that any operator of the form U�M with U 2 SU�2�
is decomposed asU�M �

L
� ���U� � 1, and any unitary

operator Sp corresponding to permutation p 2 SM is
decomposed as Sp �

L
� 1 � ~����p�. Here the maps ��

and ~��� are irreducible representations of SU(2) and SM,
respectively. The index � runs over all Young diagrams
with two rows and M boxes, namely, � � �M� k; k� with
k � 0; 1; . . . ; bM=2c. We thus use k instead of � below. For
later use, we derive a convenient form of the projection Pk
onto Uk �V k. Let us parametrize the pure states of a
qubit as jni, using the unit vector n in the Bloch sphere.
Define a state on H �M as jk;ni � j	i�kjni�M�2k, where
j	i is the singlet state �j0ij1i � j1ij0i�=

���
2

p
of two qubits.

The state jk;ni is contained in subspace Uk �V k.
Consider the operator with unit trace

1

4�M!

X
p

Z
dnSpjk;nihk;njS

y
p: (9)

Since it commutes with any Sp and any U 2 SU�2�, it
should be equal to �dUk d

V
k ��1Pk, where dUk � dimUk and

dVk � dimV k.
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Since  commutes with any Sp, it can be decom-
posed as  �

L
k�pk=d

V
k �k � 1, where

P
pk � 1 and

Trk � 1. Then, h�jj�i �
P

k�pk=d
V
k �h�jPkj�i. Substi-

tuting the form of (9) for Pk, we have

h�jj�i � max
k;n

dUk
M!

X
p

jh�jSpjk; nij2: (10)

Recall that j�i takes the form of j�i �
N

 j i
�n ,

where  represents the double index �b; j�. Then,
jh�jSpjk;nij2 becomes the product of �S  0 �s  0 and
�T �

t , where S  0 � jh jh 0jj	ij2 and T � jh jnij2.
The numbers s  0 and t depend on the permuta-
tion p. Let $�fs  0 g; ft g� be the number of different per-
mutations that give the same values of fs  0 g; ft g.
Explicitly, this degeneracy factor is given by $�
�
Q

 n !�k!�M� 2k�!=�
Q

 ; 0 s  0!
Q

 t !�. Using this fac-
tor, the summation over p can be replaced by the summa-
tion over fs  0 g; ft g, which take at most poly�M� values.
Since dUk �M� 2k� 1 is also poly�M�, we obtain
h�jj�i � poly�M�maxk;n;fs  0 g;ft g�$=M!�

Q
 ; 0 �S  0 �

s  0 �Q
 �T �

t . Combining this inequality and Eq. (8), and
replacing the factorials by the entropy function
H�pi� � �

P
i pilog2pi using the formula poly�N��1 �

2�NH�pi�N!=
Q
�Npi�!� 1, we can cast the upper bound

into the form p��0; �1� � poly�M�2�MminR, where the ex-
ponent R is given by

R�H�Mb=M�� �k=M��D�s  0=kjS  0=4�� 2�

� �1� 2k=M��D�t =�M� 2k�jT =2�� 1�; (11)

where D is the relative entropy defined by D�pijqi� �P
i pilog2�pi=qi�. The empirical probability pbj �

t =�M� 2k� appearing here can be regarded as a joint
probability over the two variables b and j, and we can
consider its marginal probability pj � p0j�p1j and the
conditional probability pbjj � pbj=pj. We use similar no-
tations for other joint probabilities qbb0jj0 � s  0=k, �bj �
T =2, and �bb0jj0 � S  0=4. We further introduce a vari-
able a, which takes three values f1;2;3g, define a proba-
bility *a by *1 � 1� 2k=M and *2 � *3 � k=M, and
define a joint probability +ab over a and b, defined by
+1b � *1pb, +2b � *2qb, and +3b0 � *3qb0 . Then, it is a bit
tedious but straightforward to rewrite Eq. (11) as

R� �k=M��D�qbb0 jqbqb0 � �
X
bb0

qbb0D�qjj0jbb0 j�jj0jbb0 ��

� �1� 2k=M�
X
b

pbD�pjjbj�jjb��D�+abj+a+b�;

(12)

where we have used +b �Mb=M, �b � 1=2 and �bb0 �
1=4. Since all terms are non-negative, R is zero only if
each pair of probabilities in D is identical. This implies
pbj � jhb; jjnij2�Mb=M�, qbj � �1=2��Mb=M�, and qb0j0 �
�1=2��Mb0=M�. From the relation nb;j �M�*1pbj�
*2qbj�*3qb0j0 jb0�b;j0�j� we conclude that, for minR to
be zero, it is necessary that
167904-3
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FIG. 1. (a) The optimum value of jh’0j’1ij
2 and the key

generation rate G in the depolarizing channel. (b) The error
rates (normalized by nfil) in the data qubits for the depolarizing
channel with p � 0:03. The estimated upper bound for phase
errors (dot-dashed line), the actual phase errors (solid line),
and the bit errors (dotted line).
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�b � *1jhb;1jnij2��1�*1�=2 (13)

for a choice of jni and 0� *1 � 1, or equivalently, �b �
hb;1j,jb;1i for a state , of a single qubit. Otherwise,
p��0;�1� is as exponentially small as 2�MminR . Note that
in the limit of M!1, the result is consistent with what is
expected from the quantum de Finetti theorem [13].

Now applying this general result to our case, we have

sin2�-l � -� � �7 � sin2/l � sin2�-l � -� � �8 (14)

for l � 0; 1, where all the angles are defined in �0; �=2� by
the relations n11=�n11 � n00� � sin2-0, n01=�n01 � n10� �
sin2-1, m11=�m11 �m00� � sin2/0, m01=�m01 �m10� �
sin2/1, and �2 � sin2-. Together with Eqs. (3)–(7), an
exponentially reliable upper bound of nph can be found.

In the following, we calculate the final key length in
the limit of large N, by setting all �j to be zero. From
Eq. (2), nbit is found to be equal to nerr. Equations (3)–(7)
are now linear equations, and together with the relationP
nij �

P
mij � N, they can be used to eliminate nij and

mij. Then, the inequalities (14) for l � 0; 1 are combined
to give

jnfil � 2nerrj � N��f�x�; (15)

where f�x� �
�����������������
x2 � +2

p
�

���������������������������������������������������������
�1� x�2 � ��2 � �2 �+�2

p
with + � �nfil=N � 2�2�2�=��2 � �2� and x �
2nph=N � ��2 � �2�+. The positivity of nij requires
that j+j � x � 1� j�2 � �2 � +j. Solving Eq. (15)
gives an upper bound nph on the number of phase errors
nph, as a function of the observed values nerr and nfil.

The achievable length of the final key is given
[8,14] by nkey � nfil�1� h�nbit=nfil� � h�nph=nfil��, when
nph=nfil � 1=2 [note that positions of errors are random-
ized in step (2)]. Here h�p� � H�p; 1� p�. In order to
show a quantitative example of the security, we assume
that the channel is the depolarizing channel where the
state  evolves as  ! �1� p�� p=3

P
a�x;y;z ,a,a,

where ,a is the Pauli operator for component a. In
Fig. 1(a), we plot the key generation rate G � nkey=N
optimized over the nonorthogonality jh’0j’1ij

2. It is
seen that our protocol is secure up to p� 0:034, which
is smaller than in BB84 with one-way EDP (p� 0:165)
[6]. In Fig. 1(b), it can be seen that when jh’0j’1ij2

becomes smaller, the estimation of the phase errors be-
comes poorer. On the other hand, larger values of
jh’0j’1ij

2 make the signal more vulnerable to noise,
resulting in larger errors. This trade-off is in contrast to
BB84, in which a good estimation and small errors are
achieved at the same time by adding two more states in
the protocol.

In summary, the B92 protocol can be regarded as an
EDP with a filtering process, and the filtering makes the
phase and bit errors related to each other, which enables us
167904-4
to estimate the phase errors from the amount of the bit
errors. The estimation scheme involving nonorthogonal
measurements developed here will also be useful in prac-
tical QKD schemes having lower symmetries due to
imperfections in the apparatus.
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