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A tripartite entangled state of bright optical field is experimentally produced using an Einstein-
Podolsky-Rosen entangled state for continuous variables and linear optics. The controlled dense coding
among a sender, a receiver, and a controller is demonstrated by exploiting the tripartite entanglement.
The obtained three-mode ‘‘position’’ correlation and relative ‘‘momentum’’ correlation between the
sender and the receiver, and thus the improvements of the measured signal to noise ratios of amplitude
and phase signals with respect to the shot noise limit are 3.28 and 3.18 dB, respectively. If the mean
photon number n equals 11 the channel capacity can be controllably inverted between 2.91 and 3.14.
When n is larger than 1.0 and 10.52, the channel capacity of the controlled dense coding is predicted to
exceed the ideal single channel capacity of coherent and squeezed state light communication,
respectively.
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FIG. 1. Experimental setup for tripartite entanglement gen-

partite entangled state is produced by distributing a eration and controlled dense coding.
Quantum entanglement shared by more than two
parties is the essential base for developing quantum com-
munication networks and quantum computation. The
three-particle entangled states for discrete variables,
also called Greenberger-Horne-Zeilinger (GHZ) states,
have been proposed [1] and then experimentally realized
[2,3]. The controlled dense coding (CDC) for discrete
variables using a three-particle entangled state has been
theoretically discussed [4]. Recently, under the motiva-
tion of the successful experiments on continuous-variable
(CV) quantum teleportation [5] and quantum dense
coding [6], the schemes demonstrating quantum telepor-
tation network [7] and CDC [8] for CVusing multipartite
entanglement have been proposed. A necessary and suffi-
cient condition for the separability of tripartite three-
mode Gaussian states has been theoretically derived [9].
An experimentally accessible criterion for a GHZ-like
state of CV has been given by van Loock and Braunstein
[7]. A GHZ-like state is a three-mode momentum (posi-
tion) eigenstate with total momentum p1 � p2 � p3 � 0
(position x1 � x2 � x3 � 0) and relative positions xi �
xj � 0 (i; j � 1; 2; 3) (momenta pi � pj � 0). In experi-
ments using optical modes, the phase and amplitude
quadratures of light fields correspond to the momentum
and position components, respectively. If measured noise
power spectra of total phase (amplitude) quadratures of
three modes and relative amplitude (phase) quadratures
are below the corresponding shot noise limit (SNL), we
say the three optical modes are in a tripartite entangled
state. So far to the best of our knowledge, the experimen-
tal report on the generation of multipartite entangled state
for CV and its application has not been presented.

In this Letter we report the first experimental demon-
stration of quantum entanglement among more than two
quantum systems with continuous spectra. The tri-
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two-mode squeezed state light to three parties using
linear optics. The obtained tripartite entangled optical
beams are distributed to a sender (Alice), a receiver
(Bob), and a controller (Claire), respectively. The infor-
mation transmission capacity of the quantum channel
between Alice and Bob is controlled by Claire. The
channel capacity (CC) accomplished under Claire’s help
is always larger than that without her help. For large mean
photon numbers (n > 10:52), the CC of the CDC com-
munication is predicted to exceed that of ideal squeezed
state communication.

Figure 1 is the schematic of the experimental setup
for tripartite entanglement generation and CDC. A semi-
monolithic nondegenerate optical parameter ampli-
fier (NOPA) involving an 	-cut type-II KTP crystal
and pumped by an intracavity frequency-doubled and
frequency-stabilized Nd:YAP/KTP (potassium titanyl
phosphate) laser serves as the initial bipartite entangle-
ment source. The configuration and operation principle of
this source have been described in detail in our previous
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publications [6,10]. The output optical modes with hori-
zontal and vertical polarizations b̂b1 and b̂b2 are a pair of
bright Einstein-Podolsky-Rosen (EPR) entangled beams
with anticorrelated amplitude quadratures and correlated
phase quadratures [6]. The polarizations of b̂b1 and b̂b2 are
rotated by a half-wave plate (�=2), the optical axis of
which is in 
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� 1�=

���
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p
	 relative to

the horizontal direction, and then the beams pass through
a polarizing beam splitter (PBS) with horizontal and
vertical polarizations. The output beam b̂b02 is split again
by a 50=50 beam splitter (BS1) consisting of a half-wave
plate (�=2) and a PBS to modes ĉc2 and ĉc3. In Ref. [8] we
have proved theoretically that the modes ĉc1, ĉc2, and ĉc3 are
in a tripartite entangled state which is a ‘‘three-mode
position eigenstate’’ with the quantum correlations of
total position quadratures (X̂Xc1 , X̂Xc2 , and X̂Xc3) and relative
momentum quadratures (ŶYc1 , ŶYc2 , and ŶYc3) (see Fig. 4 of
Ref. [8] for the case of r2 � 0). The outgoing tripartite
entangled state is utilized to implement the CDC.

The entangled beams ĉc1, ĉc2, and ĉc3 are sent to Alice,
Bob, and Claire, respectively. Alice modulates two sets of
classical signals on the amplitude and phase quadratures
of her mode ĉc1 by amplitude and phase modulators AM
and PM. The modulations on mode ĉc1 lead to a displace-
ment of as:

ĉc 0
1 � ĉc1 � as; (1)
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where as � Xs � iYs is the sent signal via the quan-
tum channel. The outgoing mode ĉc01 is sent to Bob
who imposes a phase difference of �=2 between ĉc01 and
himself at mode ĉc2 with a phase shifter (PS), and then
combines the two modes on BS2. The two output
beams from BS2 are directly detected by photodiodes
D1 and D2. The photocurrent of D1 and D2 is divided
into two parts with power splitters RF1 and RF2, re-
spectively. Through analogous calculation with Ref. [8]
but taking into account the imperfect detection effi-
ciency of the detectors (�< 1 for D1, D2, and D3) and
the nonzero losses of optical systems (�1 � 0 for ĉc1 and
ĉc2, �2 � 0 for ĉc3) the noise power spectra of the sum
and difference photocurrents of ĉc1 and ĉc2 modes are
expressed by [11]

h�2 {̂{�i � �2�21
e2r � 8e�2r � 9
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(2)

where r is the squeezing parameter of the EPR beams
(0 
 r <1), and VXs

and VYs are the fluctuation varian-
ces of the modulated signals (Xs; Ys). Claire detects the
amplitude quadrature of mode ĉc3 with photodiode D3 and
sends the measured photocurrent to Bob. Bob displaces
Claire’s result on the sum photocurrent:
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where g describes gain at Bob for the transformation from Claire’s photocurrent to Bob’s sum photocurrent. The optimal
gain for attaining the minimum variances of the sum photocurrent is

gopt �
�e4r � 3e2r � 4��2�21���

2
p

�e4r�2�22 � 3e2r�2�22 � 6e2r � 2�2�22�
:

It is easy to be seen that for larger squeezing the optimum gain of the sum photocurrent is g � 1��
2

p . For simplification and
without losing generality, we take g � 1��

2
p in the following calculation and experiment, so the power fluctuation

spectrum of sum photocurrent of three modes equals

h�2 {̂{0�i �
1

12

�
e2r�2

�
�22 � �21

�1

�
2
�2e�2r�2

�
�22 � 2�21

�1

�
2
�3

�
�42
�21

�2 � 4� 3�2�21 � 2�22�
2 � 2

�22
�21

��
�
1

2
VXs

: (4)
Figure 2(a) shows the measured noise power spectra of
the amplitude sums h�2 {̂{0�i (trace 3) and h�2 {̂{�i (trace 2).
The peak height of the modulated amplitude signal (Xs)
on mode ĉc1 at 2 MHz is 1.46 dBm higher than the noise
background of h�2 {̂{0�i (trace 3). Although the signal
modulated on mode ĉc1 is included in both h�2 {̂{0�i and
h�2 {̂{�i and the peak height of the signal is the same
(��96:88 dBm), in trace 2 the modulated signal is sub-
merged in itself at the noise floor and cannot be ob-
served due to the fact that the noise floor of h�2 {̂{�i
(��96:77 dBm) is higher than the height of the modu-
lation signal. After the correction to the electronics noise
floor (trace 4), the noise reductions of �X̂Xc1 � X̂Xc2 � X̂Xc3�
and �X̂Xc1 � X̂Xc2� relative to SNL should actually be 3.28
and 1.19 dBm, respectively. Trace 2 in Fig. 2(b) is the
167903-2
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FIG. 3. The variances of amplitude sums h�2 {̂{�i, h�2 {̂{0�i,
h�2 {̂{0�iopt, and phase difference h�2 {̂{�i versus the squeezing pa-
rameter r with beam propagation efficiency �21 � 98:7%, �2

2 �
93:7%, and the quantum efficiency of detector �2 � 95:0%.

FIG. 2. (a) The noise power spectra of amplitude sums h�2 {̂{0�i
(trace 3) and h�2 {̂{�i (trace 2), trace 1—shot noise limit (SNL),
trace 4 — electronics noise level (ENL), measured frequency
range 1.5–2.5MHz, resolution bandwidth 30 KHz, video band-
width 0.1 KHz. (b) The noise power spectra of phase difference
h�2 {̂{�i (trace 2), trace 1 —SNL, trace 3 —ENL, measured
frequency range 1.5–2.5 MHz, resolution bandwidth 30 KHz,
video bandwidth 0.1 KHz.
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measured noise power spectrum of (ŶYc1 � ŶYc2) which is
2.66 dBm below the SNL (trace 1). Accounting for the
electronics noise (trace 3), it should be 3.18 dBm below
the SNL actually. Figures 2(a) and 2(b) show that the
noise power spectra of both h�2 {̂{0�i and h�2 {̂{�i, i.e., both
�X̂Xc1 � X̂Xc2 � X̂Xc3� and (ŶYc1 � ŶYc2), are below the corre-
sponding SNL. According to the criteria of the GHZ-like
state for CV mentioned above and the classification of five
different entanglement classes given in Ref. [9], the
modes ĉc1, ĉc2, and ĉc3 constitute a tripartite entangled state
classified in Class 1 of Ref. [9]. Substituting the measured
noise power of h�2 {̂{�i, h�2 {̂{0�i, and h�2 {̂{�i from Fig. 2 into
Eqs. (2) and (4), we calculate the squeezing parameter
rexp � 0:674 (5.85 dBm squeezing after the correction).
The parameters h�2 {̂{�i � 0:76, h�2 {̂{0�i � 0:47, h�2 {̂{�i �
0:48, �21 � 98:7%, �22 � 93:7%, �2 � 95:0% are taken in
the calculation according to the experimental values.
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Figure 3 shows the functions of the normalized fluc-
tuation variances of h�2 {̂{�i, h�2 {̂{�i, and h�2 {̂{0�i versus the
squeezing parameter r, where �1, �2, �, and g � 1��

2
p are

the values for the experimental system. h�2 {̂{0�iopt is the
fluctuation variance of the amplitude sum of three modes
when the optimal gain gopt is applied. We can see the
difference between h�2 {̂{0�iopt and h�2 {̂{0�i is quite small
(0.035) for the experimental squeezing rexp � 0:674,
and the difference tends to zero for larger r. h�2 {̂{0�i is
smaller than h�2 {̂{�i and increasing r, h�2 {̂{�i increases, but
h�2 {̂{0�i decreases. It means that the noise power of the
amplitude sum of three modes ĉc1, ĉc2, and ĉc3 is smaller
than that of the two modes ĉc1 and ĉc2, which is the result of
quantum correlation among the three amplitude quadra-
tures X̂Xc1 , X̂Xc2 , and X̂Xc3 . In our experiment (rexp � 0:674)
h�2 {̂{0�i is 0.29 lower than h�2 {̂{�i. There is indeed quantum
entanglement in the obtained three modes since if ĉc1, ĉc2,
and ĉc3 modes were classical light fields without entangle-
ment, the amplitude fluctuation of the sum of the three
modes would necessarily be larger than that of the sum of
ĉc1 and ĉc2 modes.

Following the theoretical calculations on the quantum
CC for dense coding in Refs. [8,11,12] we calculate the
CC of the presented experimental system. The CC with
and without Claire’s help can be deduced from Eqs. (2)
and (4):

Cdense
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1
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�	
;

(5)

where �2 is the average value of the signal photon number
and the mean photon number per mode n � �2 � sinh2r
[8,13]. The dependences of the CC for ideal single mode
coherent state [Cch � ln�1� n�] and squeezing state
[Csq � ln�1� 2 �nn�] [8,12,13] on the mean photon number
n are given in Fig. 4 to compare with that of CDC with
167903-3



0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

dense
cnC −

C
dense
cC

sqC
chC

1.00 10.521.31

C
ha

nn
el

C
ap

ac
it

y

n

FIG. 4. CC for the controlled dense coding with (Cdense
c ) and

without (Cdense
n�c ) Claire’s help, single-mode coherent state with

heterodyne detection, and squeezed state (Csq) communication.
The parameters are same as Fig. 3.
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(Cdense
c ) and without (Cdense

n�c ) Claire’s help according to
Eq. (5) and taking the experimental parameters. For the
given squeezing (rexp � 0:674), when the mean photon
number n is larger than 1.00 (1.31), Cdense

c (Cdense
n�c ) will

exceed Cch and when �nn > 10:52, Cdense
c will be larger than

Csq. By increasing the average signal photon number �2,
the CC of quantum dense coding can be improved [12].
The CC with the help of Claire (Cdense

c ) is always larger
than that without her help (Cdense

n�c ) which is the result of
the signal to noise ratio improvement due to using three-
partite entanglement [12]. For example, when n � 11, the
CC of the presented system can be controllably inverted
between 2.91 and 3.14.

In conclusion, we experimentally obtained bright tri-
partite entangled state light and accomplished the quan-
tum controlled dense coding for the continuous variables.
We deduced the formulas designating the tripartite en-
tanglement in which the influences of imperfect detection
efficiency and the losses of optical system are included.
The experiment shows that using the accessible entangle-
ment of optical modes the CC of the CDC can exceed that
of coherent state and squeezed state communication when
167903-4
the signal photon number is larger than a certain value.
The mature technique of optical parametric amplifica-
tion, the simple linear optical system and the direct
measurement for the Bell state are used in the presented
scheme; thus the experimental implementation is signifi-
cantly simplified relative to the systems using the bal-
anced homodyne detectors [5,7].
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