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A communication channel is a physical system that transfers information from one place to another.
Examples of communication channels include wires, optical fibers, and chains of spins that propagate
spin waves through a medium. This Letter shows that the power-limited communication capacity of a
multimode optical fiber or a set of parallel spin chains can be enhanced by introducing nonlinear
couplings between the modes or chains. In particular, M coupled, entangled modes can send M bits in
the same time it takes a single mode to send a single bit, and in the same time it takes M uncoupled,
unentangled modes to send

�����
M

p
bits.
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is the best rate known for power-limited communication
usingM unentangled channels [1]. For noiseless channels,

qubit. After the transfer has taken place, B’s qubit is in
the state j i and A’s qubit is in a standard state such as j0i.
As communication technologies push down to the
quantum level, a considerable effort has been made to
uncover the physical limits to the communication pro-
cess, with special emphasis on the bosonic communica-
tions channel [1]. Quantum systems can be correlated
with each other in ways that classical systems cannot, a
feature known as entanglement. This Letter investigates
how the capacity of communication channels can be
enhanced by coupling together information-propagating
degrees of freedom via a nonlinear dynamics to induce an
entangled state in the process of transmission. In contrast,
previous results have investigated enhancements to the
communication capacity of uncoupled quantum channels
by exploiting preexisting entanglement [2–6]. Here it is
shown that for fixed power, M coupled, entangled spin
chains or modes of the electromagnetic field can in prin-
ciple transmit information at a rate

�����
M

p
times greater

than M uncoupled, unentangled chains, or modes.
All physical channels are at bottom quantum mechani-

cal, and quantum mechanics restricts the rate at which
information can be transmitted down noiseless channels
at finite power. (Since the capacity of a classical channel
scales logarithmically with its signal to noise ratio, the
capacity of a classical noiseless channel such as a field
mode in a fiber is typically infinite even in the limit that
power goes to zero.) In particular, it is well established via
the use of Kholevo’s theorem [1,7] that a noiseless broad-
band bosonic channel such as a single transverse mode of
the electromagnetic field with power P can transmit C1 �

�
���������
P= �h

p
bits per second, where � �

���������
�=3

p
�1= ln2�. The

power P is equal to the energy E used to transmit the
information, divided by the total time t over which
the transmission takes place: as noted in [8], this energy
need not be dissipated in the course of transmission. As a
consequence, if the power is spread among M unen-
tangled broadband bosonic channels, each with power
P=M, the rate of communication is CCM �

�����
M

p
C1. This
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Refs. [4,5] imply that this rate cannot be surpassed
merely by entangling the states of the channels while
leaving their dynamics unchanged.

By contrast, it will be shown here that if one couples
together M spin chains or tranverse modes of the electro-
magnetic field to induce entanglement between the modes
in the course of propagation, then using power P one can

send information from A to B at a rate CQM � M
���������
P= �h

p
�

MC1 �
�����
M

p
CCM; where  �

������������������������������
2=��1� 2�M�

p
. That is, for

a fixed power, entangled chains or modes can in principle
outperform unentangled chains or modes by a wide mar-
gin for large M. Perhaps more remarkably, M entangled
modes can send M bits in the same time and using the
same overall power that it takes a single mode to send a
single bit. Not surprisingly, producing the necessary en-
tangling dynamics forM spin chains or modes is likely to
prove difficult. As will be shown, however, simple dem-
onstrations of the power of a small number of entangled
channels can be performed using existing techniques of
quantum information processing.

To determine the effect of an entangling dynamics on
information propagation, a simpler channel model is an-
alyzed—the ‘‘qubit’’ channel. The qubit channel imme-
diately generalizes to channels consisting of spin chains
and to modes of the electromagnetic field.

The qubit channel transmits a quantum bit from A to B.
Suppose that A and B each possess a two-state quantum
system, or qubit. A’s qubit holds the quantum state j i
which is to be transmitted to B, whose qubit is initially in
the state j0i. The two states j0i and j1i of the qubits are
assumed to be degenerate, so that no energy is required to
store the qubit. The qubit channel can be used either
to transmit classical information—j i � j0i or j1i—or
to transmit quantum information—j i � �j0i 	 j1i,
where j�j2 	 jj2 � 1. The dynamics of the channel
should transfer the information from A’s qubit to B’s
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The laws of quantum mechanics [9] then bound the rate
of information transmission down the qubit channel given
limited power. The average overlap jh0j ij2 of A and B’s
initial state with their final state is 1=2. Accordingly, each
time the channel is used, the total state of A and B
together with the channel must evolve by an average
angle in Hilbert space of at least �=2. That is, to transmit
a 0 requires no transformation of B ’s qubit, but to trans-
mit a 1, B’s qubit must be rotated by �. When a 0 is sent,
no transformation of B ’s qubit takes place and no energy
is required: E0 � 0. But when a 1 is sent, the Margolus-
Levitin theorem [10] implies that when B’s qubit is rotated
by �, the average energy of the complete system above its
ground state must be at least E1 � � �h=2�t, where �t is
the time over which the transfer takes place (see also
[11,12]). If a 1 is sent with probability p1, the power
is P � hEi=�t � � �h=4�t2, where hEi � p0E0 	 p1E1.
If a 1 is sent half the time, then a bit is transferred
from A to B at a rate

CQ1 � 1=�t � �2=
����
�

p
�

���������
P= �h

p
: (1)

The power-limited transmission rate of the qubit chan-
nel differs from that of the broadband bosonic channel
capacity by a constant of order unity.

The above argument shows why power is the limiting
quantity for information transmission. Energy limits the
speed with which any quantum-mechanical transforma-
tion takes place: to make something happen, e.g., a bit go
from here to there, in time �t requires energy � �h=�t to
be invested in whatever system is performing the trans-
formation. Since energy � �h=�t is being invested for time
�t, the power P � E=�t goes as � �h=�t2. Accordingly,
the rate at which any transformation can take place given
power P is 1=�t�

���������
P= �h

p
. The rate of transformation is

limited by the square root of the available power, whether
that transformation is communication, computation, or
work. The results derived here for limits to quantum
communication channels are closely related to the funda-
mental limits to computation derived in [12]. Indeed,
the maximum rate at which quantum logic operations
can be performed is also given by 1=�t�

���������
P= �h

p
, where

P is the power invested in performing the operation.
The energy invested in communication need not be

dissipated [8]. In the bosonic channel, the energy is
typically transmitted down the channel. In the case of
channels such as the spin chains discussed below, the
energy invested in communication goes into interactions
between the spins along the chain, allowing information-
bearing excitations to propagate along the chain.

A particularly simple communication channel is that
between adjacent bits in a quantum computer [13].
Consider, for example, a simple NMR quantum informa-
tion processor consisting of a carbon 13 doped alanine
molecule. The backbone of the molecule consists of a
chain of three covalently bonded carbon 13 atoms. In
167902-2
room-temperature NMR, the spins of the carbon 13 nu-
clei interact via the electrons in the bonds. These inter-
actions can be used to propagate information from atom
to atom at a rate 1=�t close to

��������������
E= �h�t

p
, where E is the

interaction energy between adjacent spins. (It is the inter-
action energy that governs the transfer rate: the energies
in the microwaves and in the magnets in NMR are, of
course, much greater.) That is, existing quantum logic
devices can swap information from one place to another
at rates that are governed by Eq. (1), with minimal dis-
sipation during the transfer process.

Equation (1) applies to the reliable transmission of a
single bit. If one is willing to send less than a full bit of
information by sending a 0 with a higher probability, one
can decrease the energy per transmission time �t. This
‘‘poor student’’ strategy can increase the power-limited
transmission rate by a fraction h�q�=

������
2q

p
, where q is

the probability of sending a 1, and h�q� � �qlog2q�
�1� q�log2�1� q�. The maximum increase obtainable
by the poor student strategy is a factor of 1:1475 for q �
0:2415. In addition, if one is willing to use error correct-
ing codes, then the average transfer time can be less than
�t � � �h=4E, as one does not have to rotate the state of A
and B by the full angle �: one can enhance the trans-
mission rate by rotating by slightly less than� and having
B measure his qubit. The maximum enhancement in
power-limited communication rates that can be obtained
by such techniques is not known.

A simple example of an interaction that attains the
qubit communication rate (1) is the application of a
‘‘swap’’ operation: S �

P
1
ij�0 jijiABhjij. S is a unitary

transformation that swaps the quantum information in
A’s qubit with the quantum information in B’s qubit:
Sj iA  j�iB � j�iA  j iB, for all states j�i; j i. Note
that S2 � 1: two applications of S return the bits to their
original states. Consequently, S is Hermitian and has
eigenvalues �1. Note also that e�i�S � cos�� i sin�S.

Swap is a natural Hamiltonian for a variety of physical
processes, including the exchange interaction between
electrons. Two electrons interacting via a Heisenberg-
like interaction with average energy E above the ground
state energy will in fact swap the information registered
by their spins in a time �t � � �h=2E, thereby saturating
the limit of Eq. (1). If one waits for a second time step �t,
the interacting electrons will swap the information back
again.

Now analyze the power applied during a swap opera-
tion. The power is the average energy of the swap inter-
action divided by the time over which the interaction
takes place. Apply the Hamiltonian ~SS � � �h�1� S�=2�t
to A and B’s qubits for time �t swaps the qubits:
e�i~SS�t= �h � S. The average energy of A and B during the
swap is

E � �h jAh0jB�~SS�j iAj0iB� � � �h�1� jh0j ij2�=2�t:

(2)
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Averaging over states j i gives an energy E that saturates
the Margolus-Levitin bound. Swap attains the power/
capacity limit of Eq. (1) above. It does so coherently
and without dissipation in principle. As noted above, a
variety of microscopic physical systems including exist-
ing quantum logic devices can swap information from
one place to another at rates very close to this limit.

The swap picture of quantum information transmission
assumes a direct transfer of A ’s qubit to B. A similar
picture holds in which A’s andB’s qubits are coupled by an
intervening chain of qubits A1B1A2B2 . . .AnBn, where A
has access to A1 and B has access to Bn. Here, quantum
information can be sent along the chain by swapping Ai
with Bi over a time �t=2, then swapping Bi with Ai	1, and
repeating until the qubit has been moved from A to B. In
this case, the time taken to send a qubit from A to B is
n�t, and the average energy employed is 2nE, giving an
average power of P � 2E�t. The rate at which informa-
tion is sent down the channel is still 1 bit in time �t.
Accordingly, the transmission of information from A to B
by repeated swapping down a chain of qubits comes
within

���
2

p
of the the power/capacity limit of (1). Note

that repeated swaps move qubits from A to B and from
B to A simultaneously, so that the net transmission of
energy down the channel is zero even though the power is
nonzero. A variety of Hamiltonians (e.g., H � SA1B1

	
SB1A2

	 . . .SAnBn) can be used to propagate spin waves
down the qubit chain at rates on the order of the power/
capacity limit (1).

The similarity of the power/capacity tradeoff for
chains of qubits and for particles such as bosons should
not be surprising as the physics of spin wave propaga-
tion is closely related to the physics of particle propaga-
tion. In fact, a chain of spins interacting according to a
ferromagnetic Heisenberg interaction is well known to be
equivalent to a system of propagating fermions [14],
which are also known [1] to support a maximum trans-
mission rate that goes as

����
P

p
= �h.

Now investigate the case of multiple qubit channels
that can be coupled to each other during the course of
propagation. It is here that entanglement leads to a sig-
nificant enhancement in power-limited transmission rate.
Clearly, M uncoupled qubit channels can transmit infor-
mation at a rate

�����
M

p
greater than a single quantum

channel using the same power P merely by divid-
ing the power equally among the channels. Each channel
now transmits at a rate �2=

����
�

p
�
��������������
P=M �h

p
giving an over-

all rate of transmission ~CCCM � �2M=
����
�

p
�
��������������
P=Mh

p
�

�2=
����
�

p
�

��������������
MP=h

p
�

�����
M

p
~CC1 (here the tilde ~ indicates that

the capacity is that of the qubit channel rather than the
bosonic channel). This rate enhancement is the best en-
hancement known for parallel unentangled channels and
holds for both the bosonic channel and for the qubit
channel.

If one is able to engineer interactions that entangle the
qubit channels in the process of transmission, one can do
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even better, as will now be shown. The goal of the
M-channel transfer is to enact the 2M-qubit analog of
the swap above: S1...M � S1S2 . . .SM, where S1 is the swap
operator on the first of A and B’s qubit channels, S2 is the
swap operator on the second, etc., The 2M-qubit swap
S1...M swaps A’s M qubits with B’s M qubits and has the
same properties as the 2-qubit swap above (Hermitian,
squares to one, etc.). As above, define the Hamiltonian
~SS1...M � � �h�1� S1...M�=2�t. Applying the Hamiltonian
~SS1...M for a time �t then swaps A’s qubit string with B’s
qubits. The average energy during the M-qubit swap is
E � � �h�1� jh0j ij2�=2�t; as in Eq. (2) above. Now,
however, jh0j ij2 � 1=2M for a randomly selected j i.
Accordingly, the time taken to transfer A’s bit to B using
power P is given by 1=�t �

�������������������������������������
2�1� 2�M�P=� �h

p
, which is

the M-channel analog of the limit (1). The time taken to
perform the transfer using power P comes within

���
2

p
of

the limit (1), but now for the transfer ofM bits rather than
a single bit.

It is easy to verify that during the transfer, the M qubit
channels are mutually entangled. For example, if A ’s
input state is jbMi � jb1 . . . bMi, then at time �t=2 (half-
way through the controlled flipping operation) A and B’s
qubits are in the state

e�i�=4
���
2

p �jb1 . . . bMiAj00 . . . 0iB 	 ij00 . . . 0iAjb1 . . . bMiB�:

(3)

Note that decohering the state of the channel part way
through the transmission still leaves B with a significant
amount of information. That is, as in the single qubit case,
if B measures his qubits before the full transmission time
�t, he still obtains the correct message with a nonzero
probability.

Application of the Hamiltonian ~SS1...M transfers M bits
down M parallel qubit channels using essentially the
same energy E � �h=�t, the same power P � �h=�t2,
and in the same time �t it takes a single channel to
transmit a single bit. Similar results hold for the trans-
mission of M qubits down M chains of n qubits, as above:
the transmission time in this case is n times as long, but
the power is the same as the single qubit case, while the
number of bits per second is M times the single qubit
channel rate.

Transferring M bits down M uncoupled, unentangled
quantum channels corresponds to the application of M
two-qubit swap operations with Hamiltonian ~SS1 	 . . .	
~SSM, as opposed to the 2M-qubit swap Hamiltonian
~SS1...M � ~SS1~SS2 . . . ~SSM, and takes

�����
M

p
times the energy of

the entangled swap. As a result, the coupled, entangled
channels have a capacity of at least

�����
M

p
times the capacity

of the uncoupled, unentangled channels. To find the abso-
lute upper bound on the capacity of coupled quantum
channels will require the detailed application of
Kholevo’s theorem [1,7].
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In a certain sense, that it is just as easy in terms of
power and energy to rotate 2M bits from one state to
another as it is to rotate 2 bits from one state to another
should not be surprising: no two states in Hilbert space
are more than angle of � apart. Accordingly, if one can
effect arbitrary evolutions on the M-qubit channel
Hilbert space, M bits can be transferred using the same
power and time as 1 bit. Effectively, the coupling between
the channels allows them to transmit information in the
form a ‘‘superparticle’’ with 2M internal states. The

�����
M

p

enhancement afforded by exploiting entanglement is typi-
cal of quantum information processing and arises from
essentially the same source as the

�����
M

p
enhancements in

quantum search [15] and quantum positioning [16].
The catch is that enacting the necessary Hamiltonian

~SS1...M is likely to prove experimentally difficult. Even for
two-qubit channels, enacting the Hamiltonian of Eq. (2)
involves entangling four quantum bits, a difficult action
using current technologies. One might hope to be able to
build up this Hamiltonian time evolution using elemen-
tary quantum logic operations on two quantum bits at a
time, but in this case most of the power advantage is lost,
as the net angle rotated in Hilbert space becomes larger
than �. To attain the

�����
M

p
enhancement of channel ca-

pacity allowed by entanglement, an M-qubit entangling
operation must be used. The single qubit channel swap
operator between A and B corresponds to a Hamiltonian
�Ax�

B
x 	 �Ay�

B
y 	 �Az �

B
z , and the corresponding operator

for swapping particles such as photons between A and B is
aAa

y
B 	 ayAaB. The M-channel swap operator S1...M is the

product S1S2 . . . SM of the individual swap operators: such
operations correspond to interaction operators of the form
�1
x�2

x . . .�Mx for spin qubits and aA1a
y
B1 . . . aAMa

y
BM 	 H:c:

for particle modes. That is, Mth order nonlinear interac-
tions are required to attain the entanglement-enhanced
channel capacity presented here. Such interactions are
hard to enact experimentally, although it is possible to
use simple quantum logic and quantum communication
devices to perform proof-of-principle demonstrations of
entanglement-enhanced capacity for small M. For ex-
ample, suppose that A wants to use microwaves or light
to load 2 bits onto the nuclear spins or hyperfine levels of
B’s two atoms. The results derived above show that if A is
able to manipulate entangling interactions between the
two spins or atoms, the 2 bits can be loaded using

���
2

p

less power than in the case that the spins or atoms re-
main unentangled. Such a proof-of-principle experiments
based on existing techniques for performing quantum
logic [13] could be performed using nuclear resonance
on two spins in a molecule, or using optical resonance on
two interacting atoms or ions in a trap.
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For larger M, enacting the proper entangling coupling
is likely to prove experimentally difficult, but if such
coupling can be enacted, substantial gains in quantum
channel capacity can be obtained. Whether or not the
potential gains afforded by entanglement can be realized
in experimentally feasible quantum optical systems act-
ing over significant distances remains an open question.
Additional open questions include the effect of noise on
entangling channels, and whether partial entanglement
allows a lesser but still significant communication en-
hancement. But as this Letter shows, entanglement in
principle gives a significant increase in channel capacity.
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