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Measuring Quantum Entanglement without Prior State Reconstruction
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It is shown that, despite strong nonlinearity, entanglement of formation of a two-qubit state can be
measured without prior state reconstruction. Collective measurements on a small number of copies are
provided that allow one to determine quantum concurrence via estimation of only four parameters. It is
also pointed out that another entanglement measure based on so-called “negativity” can also be
measured in a similar way. The result is related to the general problem: What kind of information can be
extracted efficiently from an unknown quantum state?
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Two-qubit state entanglement is well characterized. It
is the only case where an analytical formula for the
entanglement of formation E, [1] has been provided
with the help of so-called concurrence (see [2] for re-
view). Simple necessary and sufficient conditions for the
presence of entanglement in a two-qubit state are known
[3,4], which involve the so-called positive partial trans-
pose (PPT) map. However, the question is how to detect
the presence of entanglement in an unknown state effi-
ciently, i.e., with a minimal number of estimated parame-
ters. The problem was that the PPT test is represented by a
nonphysical operation. On the other hand, concurrence
and entanglement of formation are complicated nonlinear
functions. One might expect that they require full prior
state reconstruction in general. The same might be ex-
pected to hold for any other entanglement measures [5,6]
(see also [7]). Indeed direct detection of entanglement of
formation [8,9] has succeeded only for pure two-qubit
states and relied on a very special property of the function
in that case. Even then, however, the procedure requires
the estimation of more than one observable [8].

Quite recently, using a formula of the best structural
physical approximation of Hermitian nonphysical maps
[10], it has been shown [11] how to detect violation of the
PPT separability test (or any positive map separability
test) experimentally without any prior knowledge about
the quantum state (for the analysis of the interferometric
scheme, see [12]; cf. [13]).

In this work we provide a protocol detecting the con-
currence of a given unknown state by the estimation of
four parameters in collective measurements of a small
(not more than eight) number of copies. We also point out
how to estimate the computable entanglement measure
[6] based on negativity [6,14] in a similar way. This gives
quadratic gain in a number of parameters if compared to
quantum tomography. The corresponding protocol can be
generalized to any d ® d’ system. We discuss both pre-
sented protocols as far as the number of involved copies
are concerned. In particular, to estimate two-qubit entan-
glement of formation one needs a slightly greater number
of copies than in the state reconstruction scheme. It is,
however, different for computable measure where both the
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number of estimated parameters and the number of in-
volved copies are less than what state reconstruction
requires. Subsequently we describe the protocols and
conclude with some discussion.

Measuring two-qubit entanglement of formation.—
Let us start with a general formula for the entangle-
ment of formation E, of a given bipartite state @ [1]:
E (@) = ming, 41> piS(Try(l:X;])) where S(o) =
—Tr(olog,o) is the von Neumann entropy of state o
(counted in bits) and the minimum is taken over all
ensembles {p;, #;} such that > ; p;ly; ;| = 0. Tt has
been shown that for two qubits entanglement of formation
amounts to [2]
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where  h(x) = —xlogy(x) — (1 — x)logy(1 — x) is the
Shannon binary information. An important state function
called concurrence [2],

C(0) = max[\/A; — /A — A3 = /A, 01 (2)

involves four real monotonically decreasing numbers {A;}
which are eigenvalues of the (non-Hermitian) matrix o0
with
0 =203,
where Pauli matrices act on Alice and Bob qubits, re-
spectively (recall that @ is a two-qubit state) and the
asterisk stands for a complex conjugate. Obviously neither
C nor E is measurable in the usual quantum mechanical
sense; i.e., neither of them is an observable. This follows
from the very fundamental laws of quantum mechanics:
both functions are nonlinear in state parameters while
only linear operations can be performed on a single copy.
Still one can try to estimate them in another way —
involving access to several copies. Such an approach
succeeded for pure two-qubit states [9] based, however,
on a very special property of a pure state, ie., the
dependence of its entanglement on eigenvalues of a re-
duced density matrix.
We would have C and E; determined for arbitrary
given © if only we knew the following numbers: A, A,,

S=0,80, 3)
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A3, A4. They come from a rather complicated nonlinear
function of Q. Surprisingly for any unknown @ they can
be physically measured by estimating only four parame-
ters (instead of 15 describing full density matrix) if joint

measurements are available. The idea of the present
method is to find (in collective quantum measurements)
four “moments” that allow us to reconstruct A’s and,
consequently, concurrence completely. The scheme of the
corresponding protocol is very simple:

Ay Ay
e®e—>91=><M1>=ZAi, e®e®e®9—>92=><Mz>=Z(A,-)2,

0®0®08 080800y = (My) =S (\),
1

According to the above, each 20 copies from a given
sample of systems in state @ is divided into four groups
consisting of two, four, six, and eight copies, respectively.
Then we subject each group to some specific quantum
channel (i.e., completely positive trace preserving map)
A, k=1,2,3,4. As a result we get quantum states Qy.
Finally, we estimate mean values (M) = Tr(0;M;) of
four observables M,. They represent the moments needed
to reconstruct the values {A,;}. Moreover, as we see below,
each (M) can be determined via estimation of a single
parameter in binary positive operator valued measure
(POVM)).

To see how the above scheme works we need to recall
the concept of physical approximation of the PPT opera-
tion [11]. Namely the trace preserving map

d
Axy(oxy) = ——Ix® Iy + I (oxp)T  (5)

1
d+1 >+
is physically implementable on any bipartite d ® d state
oyy defined on H y ® H . Thus Ayy corresponds to
what in literature is called quantum channel. In for-
mula (5) Iy, Iy stand for identity matrices corresponding
to subsystem X, Y, respectively, while the operation (-)7*
stands for the partial transposition map [3] which simply
transposes indices corresponding to the second subsystem
Y. The map (5) is called a structural physical approxi-
mation (see [10,11]) of the partial transposition map. The
latter is unphysical in the sense that it cannot be physi-
cally implemented by itself. In particular, one can define
in a similar way such an approximation for the trans-
position map. For two qubits the latter coincides with the
previously introduced universal-NOT gate (see [15]).

A detailed description of the scheme (4) is presented in
two steps.

Step I Action of channels A;: We define quantum
channel A, as being composed of two physical opera-
tions: (i) the map (5) with d = d; = 4% and spaces Hy
(3H y) describing all the copies on the odd (even) position
in the kth group and (ii) the subsequent action of unitary
operation 3 on each “even” copy. For instance, in the
second group 0 ® 0 ® 0 ® ¢ (k = 2) the first and the third
copy correspond to subsystem X, while the remaining two
represent subsystem Y. Only copies belonging to Y will be
subjected to subsequent action (ii) of unitary operation ..

Let the channels A act on groups of states according
to the scheme (4). As a result we get the following four
states:
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Up to the maximal noise part, the above states can be
considered as ““proportional” to the matrices (0 ® 0)®*.
In fact, they differ from the matrices by a shrinking
factor ﬁ at the “Bloch vector.”” This property is similar
to what happens in the theory of approximate cloning or
in the case of universal-NOT gate [15].

Step Il Measurement of moments {(M,):. There is a
method [10,12] that allows one to measure spectrum state
estimation with the help of observables constructed from
shift operators V,, [16]. They have the property

Tr(ViyA; ® ... ® A,) = Tr(AA,; ... A,). 7

Combining the above property with the fact that all mo-
ments Zi()tl-)k are real, one can see that the latter are
mean values of the following observables:

:d2+1
2

when each of them is calculated on state Q; [see
scheme (4)]. Finally, the numbers A; can be inferred
uniquely from the moments. This can be shown in a
similar way by using the techniques of Ref. [10].

Now an important point is that each mean (M;) can be
detected (up to rescaling) as a single parameter in special
binary POVM [17]: following Ref. [12] each observable
M, can be encoded into some ancilla and then its mean
value can be reproduced from the measurement of the
elementary binary observable (Pauli matrix o) (see [18]
for modified binary POVM with minimal single-qubit
ancilla). This concludes the description of the protocol.

The presented method is parametrically efficient: it
requires fewer parameters to be measured than state
reconstruction does (4 instead of 15). It is not so as long
as the number of copies is concerned: one ‘“‘round” of
quantum tomography requires 15 copies while here [see
(4)] we require 2 + 4 + 6 + 8 = 20 copies in each round
of the protocol. However, the factor r = rpre =
“number of parameters X number of copies” is here less
(r = 80) than for the state reconstruction schemes (r =
165). Even more striking is the fact that while the num-
ber of copies consumed in one round of the experiment
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is increased only by 33% (from 15 to 20), the number
of parameters is decreased almost 4 times (from 15 to 4).
It suggests that an optimal method of entanglement esti-
mation should exist that consumes the same number of
copies as state reconstruction but requires a lesser num-
ber of parameters (5 or 6). Note that the present method
is useful when we are allowed to use a small number
of apparatuses with fixed architecture. One can also an-
ticipate the existence of a tradeoff between r, and r,
involved in the estimation of any entanglement mea-
sure. Optimization of the tradeoff is an interesting open
problem.

Note that above we have asked the question:‘“‘How
much entanglement is in the system?”’ Our measurement
protocol allows one to find an answer to this question. Of
course, the protocol solves also a less detailed problem:
“Is there any entanglement in the system at all”’? One
can, however, discern the two questions above and con-
sider the scenario when the observer knows that two-qubit
entanglement is present in the system but has no idea
“how much.” Below we provide a protocol for such a
scenario based on the fact [19] that if the 2 ® 2 state © is
entangled, then the smallest eigenvalue of the matrix
y = 2™ 30"+ is proportional to %9)2. The modified
protocol must involve the map (5) (with transposed sub-
systems suitably permuted) to produce the new states 7y}
with Bloch vector proportional to (20743 ® p7#)®k (here
they play the same role as states @, in Step I). Then one
should estimate eigenvalues of 7y, in the same way as in
Step II and infer C(p) following the result of Ref. [19].
The above protocol answers the quantitative (how much)
question provided that observers have qualitative infor-
mation that there exists entanglement in the system. To get
the information one can use a physical application of the
PPT test [11]. Because of its binary character (possible
“yes-no” answer) it requires less measurement effort
than the quantitative stage described above. We can use
this fact to minimize measurement effort: if the PPT test
does not reveal any entanglement, we just abandon the
second stage.

Multilevel systems and computable entanglement
measure.—For general bipartite d ® d systems (they
can be called multilevel systems) there is no analytical
formula for entanglement of formation. However, at least
one nontrivial entanglement measure can be calculated
analytically. This is the so-called “computable entangle-
ment measure” [6], cf. [20]

E.(0) = loglle|l, )

where || - || stands for trace norm which for the Hermitian
operator amounts to the sum of moduli of its eigenvalues.
In particular, the quantity (||@”#]| — 1) is introduced to
quantify entanglement [14] and after normalization N =
(IleT#|| — 1)/2 called negativity has been shown [6] to be
entanglement monotone [21]. The measure (9) is weaker
than entanglement of formation; it ““detects,” however, all
free, i.e., distillable, entanglement of bipartite systems.
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To estimate the measure we must experimentally deter-
mine the following quantity:

llo™ll = 3 Inll, (10)

where {A!} are eigenvalues of the partially transposed
state @7#. The above formula is crucial for subsequent
analysis.

We now apply the scheme of Ref. [11] making, however,
full use of its output rather than focusing on its minimal
eigenvalue. For any bipartite d ® d state @ the scheme
consists of application of the map (5) which leads to a new
quantum state 0; = A,p(0) with eigenvalues {A;}. They
are related to eigenvalues A} by the following affine
function:

d 1 ,

A d3+1+d3+1/\i' (in
The key point is that {A;} can be determined experimen-
tally via measurement of r, = d> — 1 observables (see
[10-12]). It is much less than d* — 1 required for quantum
tomography. Having A;’s one can calculate all the pa-
rameters A: = (d® + 1)A; — d and substitute them to the
formula (9) which provides the value of the corresponding
measure.

It is interesting that in the present scenario one has
also gained in the number of copies involved. Indeed we
have r,=2+3+ ...+ d*>=(d*+d*>—2)/2 instead
of r,=d*—1.

The whole scenario can be immediately generalized to
any d ® d' system with d # d'. Only the parameters in (5)
will change slightly. They can be easily calculated with
help of the structural approximation formula [10].

Discussion.—In conclusion we have provided the
first nontrivial protocols of entanglement estimation that
require no prior knowledge about the states. The first
presented protocol allows one to detect two-qubit entan-
glement of formation with the help of joint measure-
ments on a small number of systems. In one round the
method requires 33% of copies more than state recon-
struction (20 instead of 15). However, it needs almost 4
times less parameters (4 instead of 15) than quantum
tomography does. We have also shown how to estimate
the experimentally computable measure of entangle-
ment E. based on the partial transpose operation. We
have pointed out how the protocol from Ref. [11] allows
one to determine E, with the help of the estimation of
only d*> — 1 parameters instead of d* — 1 ones required
by all state reconstruction procedures. The scheme pro-
vides also a gain in the number of copies consumed: r, =
(d* + d*> —2)/2 instead of r, = d* — 1 due to state re-
construction schemes.

It would be interesting to find a similar protocol de-
termining some parameters of the best separable ap-
proximation of two-qubit quantum states (for instance,
the entangled part of the Lewenstein-Sanpera decompo-
sition [22]). It involves the question of how to find
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experimentally the eigenvector corresponding to the least
negative eigenvalue of partially transposed density ma-
trix o7. To get the eigenvector with minimal measure-
ment cost would be particularly interesting because it
plays a crucial role in the only universal protocol of
two-qubit entanglement distillation [23]. In the above
context basic questions naturally arise: (i) Is it possible
to estimate the eigenvector corresponding to the extreme
eigenvalue of a given density matrix without prior recon-
struction of the latter? (ii) If so, how efficiently can it be
done? Any possible solution for these problems must take
into account the fundamental restrictions on quantum
“nonlinear operations” [10,24].

The present results naturally lead also to another inter-
esting question: Is it possible to estimate efficiently other
entanglement measures (such as relative entropy of en-
tanglement [25]) or, more generally, correlation measures
(such as the one from Ref. [26]) based on von Neumann
entropy? For pure states the answer is positive as all the
measures are equivalent to the entropy of the reduced
density matrices which at the same time is proportional to
the index of correlation I = S, + Sp — Syp. For mixed
states the latter serves rather as a measure of global
(quantum + classical) correlations [26]. Following the
present analysis I can be efficiently measured without
state reconstruction in general. The present method can-
not be generalized to relative entropy of entanglement or
distillable entanglement until analytical (or partially ana-
lytical) formulas for those measures are known.

Furthermore, from the point of view of general quan-
tum information theory, a very important problem fol-
lows: What kind of information (whatever it means) can
be extracted from an unknown quantum state at a small
measurement cost? Here we have considered extraction of
information represented by a single parameter (entangle-
ment measure). It is closely related to the following
problem: What kind of measurement information can be
extracted from the state in the protocols destroying as
little quantum information as possible? Indeed measure-
ment of a small number of parameters can always be
interpreted as an incomplete von Neumann measurement
which destroys quantum information less than a complete
measurement does. An illustrative example is a detection
of spectrum without state reconstruction via Young dia-
gram projections proposed in Ref. [27] (for alternative
spectrum detection, see [12]). The above issues are cru-
cial for some quite fundamental processes such as univer-
sal quantum compression. For example, it has been shown
[28] that the quantum source can be compressed effi-
ciently only if one knows the single parameter repre-
sented by von Neumann entropy of the source. The
entropy can be estimated without prior knowledge about
a state: measurement effort (see [12]; cf. [27]) is the same
as in the present protocol estimating measure E,. Finally,
we have considered one of the basic problems in general
entanglement theory: ”’How can one detect the amount of
entanglement experimentally?” This question concerns
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not only entanglement itself: any answer relates to the
properties of information contained in unknown quan-
tum states.
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