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Circuit Theory of Unconventional Superconductor Junctions
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We extend the circuit theory of superconductivity to cover transport and proximity effect in
mesoscopic systems that contain unconventional superconductor junctions. The approach fully accounts
for zero-energy Andreev bound states forming at the surface of unconventional superconductors. As a
simple application, we investigate the transport properties of a diffusive normal metal in series with a
d-wave superconductor junction. We reveal the competition between the formation of Andreev bound
states and proximity effect that depends on the crystal orientation of the junction interface.
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theory of transport in the presence of ABS has been tunneling.
In the last decade the mesoscopic superconducting
systems have been the subject of intensive experimental
and theoretical research. The transport in these systems is
essentially contributed by the so-called Andreev reflec-
tion [1], a unique process specific for normal metal/
superconductor interface. The phase coherence between
incoming electrons and Andreev reflected holes per-
sists in the normal metal at mesoscopic length scale [2,3].
This results in strong interference effects on the Andreev
reflection rate [4]. The transport properties of mesoscopic
N=S junctions have been theoretically investigated with
various approaches [4–7].

One of the authors has proposed a generic circuit theory
of nonequilibrium superconductivity which accounts for
the effects mentioned above [8,9]. The mesoscopic sys-
tem is presented as a network of nodes and connectors. A
connector is characterized by a set of transmission coef-
ficients and can present anything from ballistic point
contact to tunnel junction. The circuit theory is based
on conservation laws for so-called spectral currents.
These additional conservation laws present interference
of electrons and holes. The spectral currents through each
connector are functions of spectral vectors in the nodes.
There is one-to-one correspondence between spectral
vectors and currents and Keldysh Green functions in
the underlying microscopic approach [5]. Kirchhoff-
type equations determine spectral currents and vectors
in each node and connector, and electric current in the
circuit.

Unconventional superconductors bring about very
unusual interface physics. The transport through the in-
terface is influenced by formation of Andreev bound
states (ABS) at this interface [10–12]. Those result from
the interference of injected and reflected quasipar-
ticles. The ABS manifest themself as a zero-bias peak
in tunneling conductance (ZBCP) [11,12]. Indeed,
ZBCP has been reported in various superconductors that
have anisotropic pairing symmetry [12]. The proper
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formulated [11,12] for conditions of ballistic transport
only. This theory has to be revisited to account for
diffusive transport in the normal metal. The point is
that the diffusive transport provides an Andreev reflec-
tion mechanism for ZBCP which does not involve any
unconventional superconductivity. This mechanism
may compete with the formation of ABS. The anomalous
size dependence of transport in yttrium barium copper
oxide (YBCO) junctions reported in recent experiment
[13] seems to arise from this competition.

All this has motivated us to extend the circuit theory
to the systems containing unconventional supercon-
ductor junctions. We stress that this extension is by no
means straightforward. The circuit theory cannot be di-
rectly applied to an unconventional superconductor since
it requires the isotropization. The latter is just incompat-
ible with the mere existence of unconventional super-
conductivity. Fortunately, there is a way around. We con-
centrate on the matrix currents via the unconventional
superconductor junction to or from diffusive parts of the
system. If one knows the relation between these currents
and the spectral vectors (isotropic Green functions) in the
diffusive part, one is able to use Kirchhoff rules to
complete the evaluation of the matrix currents every-
where in the system.

This relation shall be derived from microscopic
theory and presents the main result of this work. We
stress that applicability of this relation is not restricted
to circuit theory. One can regard our result as a boundary
condition for the traditional Keldysh-Usadel equa-
tions of nonequilibrium superconductivity [5]. As an
immediate application, we study a d-wave supercon-
ductor junction in series with normal metal. The resis-
tance of the system appears to depend strongly on the
angle � between the normal to the interface and the
robe direction of d-wave superconductor (misorien-
tation angle). This reveals the competition between
the effect of ABS and proximity-induced reflectionless
2003 The American Physical Society 167003-1
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FIG. 1. The unconventional superconductor junctions (solid
box) can be incorporated into circuit theory by means of the
matrix current relation (2). This relation accounts for aniso-
tropic features of the US, as sketched for a d-wave super-
conductor.
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To derive the relation between matrix current and
Green functions, we make use of the method proposed
in [9]. The method puts the older ideas [3] to the frame-
work of Landauer-Büttiker scattering formalism. One
expresses the matrix current in a constriction in terms
of one-dimensional Green functions �ggn;	;n0;	0 �
; x; x0�,
where n,n0 and 	;	0 � �1 denote the indices of transport
channels and the direction of motion along the x axis,
respectively. The ‘‘check’’ represents the Keldysh-Nambu
structure. These Green functions are to be expressed in
terms of the transfer matrix that incorporates all infor-
mation about the scattering, and asymptotic Green func-
tions �GG1;2 presenting boundary conditions deep in each
side of the constriction. The isotropization assumption
requires that these �GG do not depend on the channel
number. Under this assumption, the current is universal
depending on transmission eigenvalues only. Although
the isotropization assumption is good for conventional
superconductors and normal metals, it fails to grasp the
physics of an unconventional superconductor where the
Green function essentially depends on the direction of
motion and thus on the channel number. To avoid this
difficulty, we restrict the discussion to a conventional
model of smooth interface, assuming momentum conser-
vation in the plane of the interface. Within the model, the
channel number eventually numbers possible values of
this in-plane momentum and the transfer matrix becomes
block diagonal in the channel index. We thus solve Green
functions �ggn;	;n0;	0 �
; x; x0� separately for each channel.
The asymptotic Green function in the unconventional
superconductor does depend on the direction of motion 	,

�GG 2; n;	; n;	 � �GG�n�
2�

1� 	
2

� �GG�n�
2�

1� 	
2

; (1)

reflecting different asymptotic conditions for incoming
( �GG�n�

2�) and outgoing ( �GG�n�
2�) waves in each channel. The

asymptotic Green function �GG1 in normal metal is the
same for both waves and all channels (see Fig. 1). All
these matrices satisfy unitary relation � �GG�n�

2��
2 � �GG2

1 � 1.
After some algebra we obtain the matrix current in the

following form:

�II �
4e2

h

X
m

� �GG1; �BBm	;

�BBm � f��m� �GG1; �HH
�m��1
� 	 � �HH�m��1

�
�HH�m�
�

��2
m
�GG1

�HH�m��1
�

�HH�m�
�

�GG1g
�1

� ��m�1� �HH�m��1
� � ��2

m
�GG1

�HH�m��1
�

�HH�m�
� 	; (2)

with �HH�m�
� � � �GG�m�

2� � �GG�m�
2��=2.

Here �m  Tm=�1�
���������������
1� Tm

p
�2 is related to the trans-

mission coefficient Tm in a given channel m. The above
relation reduces to the isotropic result of Ref. [9] provided
�GG�n�
2� � �GG�n�

2� � �GG2. The above 4� 4 matrix relation is the
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main result of the present work. It incorporates the most
general situation and allows for many applications that
involve unconventional superconductors. Below we pro-
vide a simple but extensive application example that both
illustrates circuit theory method and demonstrates an
interesting interplay of ABS and proximity effect.

The circuit is the one given in Fig. 1: diffusive con-
ductor of resistance RD in series with unconventional
superconductor junction. We disregard decoherence be-
tween electrons and holes in the diffusive conductor
(‘‘leakage’’ current in terms of Ref. [9]), and this is
justified at energies not exceeding Thouless energy of
this piece of normal metal. We restrict our attention to
the d-wave superconductor, being the most practical ex-
ample of the singlet unconventional superconductor that
preserves time reversal symmetry. For simplicity, we have
in mind a ‘‘two-dimensional’’ superconductor made from
the layers stacked in the z direction. The z axis lies in the
plane of the interface and is normal to the plane of Fig. 1.
The interface normal (x axis) makes an angle � with the
main crystal axis. The propagation directions of the
waves are thus in the xy plane and are parametrized by
the angle �with the x axis. The angular dependence of the
superconducting order parameter is thus given by ���� �
�0 cos�2��� ���. A scattering channel consists of an
incoming wave in direction �� � and an outgoing
wave in the direction �. The sums over channels can be
reduced to integrals over �:

X
m

/
Z �=2

��=2
d� cos�: (3)

The Green functions are fixed in the ‘‘US’’ terminal
and in the ‘‘N’’ terminal, and the voltage V is applied to
N terminal. The Green function in the node ‘‘DN,’’ �GG1, is
not fixed and shall be determined from the balance of
the matrix currents. There is a natural separation of
balance equations for 2� 2 spectral currents that set
advanced or retarded parts of �GG1 and for a particle
current at a given energy that sets the distribution func-
tion in the node DN [8].
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P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2003VOLUME 90, NUMBER 16
We address the balance of the spectral currents first.
The advanced 2� 2 Green functions are fixed in the
N and US terminals and read ĜGN � �z, ĜG2� � ����x�

i
�z�=
�������������������
�2

� � 
2
q

, � being Pauli matrices, �� �

�0 cos�2��� ��� being superconducting order parame-
ters that correspond to the direction of the incoming
(outgoing) wave. This suggests that the corresponding
Green function in the DN node assumes a form sin� �
�x � cos� � �z where � is yet to be determined. � is the
measure of proximity effect. All spectral currents are
proportional to �y. The spectral current i�s�D through the
diffusive conductor is proportional to the spectral angle
drop [8], and the spectral current i�s�B via the interface is
obtained from Eq. (2). The balance equation thus reads

i �s�B � i�s�D � 0; i�s�B � �
2e2

h

X
m

F��; 
; Tm�;

i�s�D � �=RD:

(4)

Under the conditions considered, the transport is de-
termined by the energy-symmetric distribution function,
which is conventionally called ft [5]. The balance of
particle currents at each energy determines this distribu-
tion function in the DN node. We will assume that the
temperature 1=" is much smaller than the typical value of
the superconducting energy gap, so we can disregard
quasiparticle excitations in the superconductor. The par-
ticle current through the diffusive conductor is given by
the drop of the distribution function at its ends, and the
particle current via the interface is given by the corre-
sponding block of Eq. (2). This yields

i �p�B � i�p�D � 0; i�p�B � ft
2e2

h

X
m

T���; 
; Tm�;

i�p�D � �ft � f0�=RD;

(5)

f0 being the symmetrized distribution function
in the normal reservoir, f0 �

1
2 ftanh�"�
� eV�=2	 �

tanh�"�
� eV�=2	g. The above relation becomes espe-
cially transparent if one regards T�’s as effective trans-
mission coefficients in each channel. It just shows that the
full (energy-dependent) resistance of the system is the
sum of the resistance of diffusive metal and the interface
resistance, the latter being influenced by the proximity
effect. The degree of the proximity effect is determined
from Eq. (4). If we define the average over the angle as

hA���i �
Z �=2

��=2
d� cos�A���

�Z �=2

��=2
d�T��� cos�

with T��� � Tm, both balance equations can be rewritten
in a compact form.

R � RD � RB=hT���; 
; Tm�i; (6)

� � hF��; 
; Tm�iRD=RB: (7)
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Here RB is the interface resistance in normal state, R is the
full resistance. It may depend on energy, so the full
electric current is given by eIel �

R
d
f0�
�=R.

To reveal the underlying physics, we present the con-
crete expressions for F � F��; 
; Tm� and T� �
T���; 
; Tm� assuming j
j � j��j. It turns out that these
expressions are essentially different for ���� _ 0, this
manifesting the formation of ABS in the latter case. For
���� < 0 (ABS channels) we have

F �
�2Tm sin�

Tm cos�� i�2� Tm�
=~��
� ���!
!0

�2 tan�; (8)

T� �
T2
m�1� j cos�j2 � j sin�j2�

T2
mcos

2�� �2� Tm�2�
=~���2
� ���!
!0 2

cos2�
(9)

with ~�� � �2j��jj��j�=�j��j � j��j�. It is somewhat
counterintuitive that the zero-energy limit does not de-
pend on the actual transmission, giving finite currents
even for insulating interfaces. This is the signature of the
resonance forming precisely at zero energy [11]. If the
transmission is low, the resonance feature persists in a
narrow energy interval ’ Tm�� only. The spectral cur-
rent F eventually suppresses the proximity effect. The
explanation is that ABS form a reservoir of normal elec-
trons within the unconventional superconductor, and F
can be viewed as a connection to this normal reservoir.
The effective transmission coefficient T� at resonance is
always bigger than 2, and is enhanced by the proximity
effect. One can understand this as a multiple Andreev
reflection induced by the corresponding ABS.

In the case of ���� > 0 (‘‘conventional’’ channels)
the resonance feature is absent and energy dependence
can be safely disregarded. The expressions are identical to
those of conventional superconductor

F �
2Tms cos�

2� Tm � Tms sin�
; (10)

T� �
2Tm�Tm � �2� Tm�s sin�	

j2� Tm � Tms sin�j
2 : (11)

Here s  sgn���� � sgn����. The spectral current F
thus induces the proximity effect of the corresponding
sign s. The effective transmission T� does not exceed 2
(which is the limiting case of the ideal Andreev reflec-
tion). Being compared with the transmission in the nor-
mal state, the effective transmission is suppressed
(enhanced) at Tm < �>� 2=3. The fully developed prox-
imity effect (� � s�=2) restores the normal transmission.

To summarize, the proximity effect originates from the
conventional channels and is suppressed by ABS chan-
nels. While the proximity effect is present, it enhances
transmission via ABS channels. It restores the effective
transmission of conventional channels to that in the nor-
mal state. The full resistance of the structure is deter-
mined by competition of all these effects. It is essential
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FIG. 2. Full resistance of the circuit versus RD for various �.
(a) � � 0, (b) � � 0:01�, (c) � � 0:05�, and (d) � � 0:25�.
Z � 1. The curve (a’) presents the same dependence for a
conventional superconductor. Similar results for � � 0 and
� � �=4 were obtained in [14] by numerical simulations.
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that one can tune the relative number of conventional and
ABS channels by changing the misorientation angle �.
As one can see from Fig. 1, the ABS channels are there
in the angle interval �=4� j�j< j�j<�=4� j�j. If
� � 0, there are no such channels. If � � �=4, there
are no conventional channels. This gives no chance to
the proximity effect.

To illustrate this further, we calculate with Eqs. (6) and
(7) the zero-voltage resistance (
 ! 0) at different
values of � as a function of RB=RD. The angular depen-
dence of the transmission coefficient was assumed to be
T��� � cos2�=�cos2�� Z� with barrier parameter Z.
The results are presented in Figs. 2 and 3. At RD � 0
there is no proximity effect in DN and the resistances are
given by the quasiballistic formulas of Ref. [11]. The
proximity effect may develop with increasing RD and
decreases the interface resistance. This gets the curves
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FIG. 3. ‘‘RLT’’ (‘‘NRLT’’) marks the region where dR=dRD <
0 (dR=dRD > 0) at RD � 0. TR is the average transmissivity
of the junction in the normal state, TR  1�
Z=�2

�������������
Z� 1

p
� ln��

�������������
Z� 1

p
� 1�=�

�������������
Z� 1

p
� 1�	 for the model

in use.
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down. The curves 2(a) and 2(a’) correspond to the d-wave
junction at � � 0 and conventional superconductor junc-
tion, respectively. One sees that the proximity effect is
weaker in the d-wave system. This is due to competition
of the conventional channels having different signs of
��. The ABS channels appear with increasing �. The
curve 2(b) demonstrates interface conductance reduced
slightly below its normal state value. This manifests the
enhanced transmission in ABS channels. The ABS
channels quench the proximity effect very efficiently at
� > 0:02�. The total resistance can be approximated
by RD � RRD�0, although this becomes exact only at
� � �=4. Following Ref. [15], we regard the counter-
intuitive negative sign of �dR=dRD�RD�0 as a signal of
importance of the proximity effect [or reflectionless tun-
neling (RLT)]. We evaluate this sign at different Z and �
(Fig. 3). The sign of dR=dRD is negative for junctions of
low transmissivity in a relatively narrow range of �.

In conclusion, we have extended the circuit theory of
superconductivity to include unconventional supercon-
ductor junctions. We have derived a general relation for
a matrix current to or from an unconventional super-
conductor. An elaborate example demonstrates the inter-
play of ABS and the proximity effect in a d-wave
junction. The theory presented will facilitate the analysis
of more complicated mesoscopic systems that include
unconventional superconductors.
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