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Interaction-Driven Spin Precession in Quantum-Dot Spin Valves
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We analyze spin-dependent transport through spin valves composed of an interacting quantum dot
coupled to two ferromagnetic leads. The spin on the quantum dot and the linear conductance as a
function of the relative angle � of the leads’ magnetization directions is derived to lowest order in the
dot-lead coupling strength. Because of the applied bias voltage spin accumulates on the quantum dot,
which for finite charging energy experiences a torque, resulting in spin precession. The latter leads to a
nontrivial, interaction-dependent, � dependence of the conductance. In particular, we find that the spin-
valve effect is reduced for all � � �.
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FIG. 1. A quantum-dot spin valve. A quantum dot (QD) is
connected to two ferromagnetic leads (FM). The coordinate
system we use is shown on the right. The magnetization
cumulation caused by the bias voltage and an interaction- directions (arrows) enclose an angle �.
Introduction.—The field of spin or magnetoelectronics
has attracted much interest, for both its beautiful funda-
mental physics and its potential applications. One famous
spin-dependent transport phenomenon is the tunnel mag-
netoresistance in a spin-valve geometry, in which two
ferromagnetic metals are separated by an insulating layer
serving as a tunnel barrier [1]. The transmission through
the barrier decreases as the relative angle � between the
magnetizations of two ferromagnets is increased from 0
to �. Within a single-particle picture the �-dependent
part of the transmission can be shown [2,3] to be propor-
tional to cos�.

Transport based on tunneling has also been extensively
studied in nanostructured devices such as semiconductor
quantum dots (QDs) or metallic single-electron transis-
tors. Recently, magnetotransport through those devices
has attracted much interest. This includes normal or fer-
romagnetic metallic islands coupled to ferromagnetic
leads [4,5] as well as spin-dependent transport from
ferromagnets through QDs [6–8]. Precession of a single
magnetic atom spin in an external magnetic field has been
detected, but only in the power spectrum of the tunneling
current [9,10].

In this Letter, we study the effect of strong Coulomb
interaction in a single-level QD (or a magnetic impurity
[11]) attached to ferromagnetic leads on the average dot
spin and the linear conductance in the weak dot-lead
coupling limit (� � kBT, where � is the intrinsic line-
width of the dot levels) [12].We find an interaction-driven
spin precession, even in the absence of an external mag-
netic field. This spin precession is predicted to be clearly
visible in the linear conductance as a reduction of the
spin-valve effect and a nontrivial � dependence. For any
nonparallel configuration, transport is reduced as com-
pared to the parallel one (spin-valve effect). In the ab-
sence of Coulomb interaction, the � dependence follows
simply cos� [2,3]. The presence of a finite charging en-
ergy, however, leads to a reduction of the spin-valve
effect. This can be understood by the interplay of spin ac-
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dependent spin torque due to an effective exchange in-
teraction between the spin in the dot and the leads, which
in turn generates spin precession, detectable in the
conductance.

The model.—We consider a small QD with one spin-
degenerate energy level � participating in transport. The
left and right leads are magnetized along n̂nL and n̂nR (see
Fig. 1), with relative angle �. The total Hamiltonian is
H�Hdot�HL�HR�HT;L�HT;R. The first part, Hdot �
�
P
�c

y
�c� �Un"n#, describes the dot energy level plus

the charging energy U for double occupation of the dot.
The leads are modeled by Hr �

P
k�ka

y
rkark with r �

L;R. For simplicity, we assume them to be half-metallic,
i.e., only majority spins have a finite density of states.
Tunneling between lead and dot is described by HT;L �
t
P
k�a

y
Lkc� � H:c:�, where c� is the Fermi operator for

an electron on the QD with spin along n̂nL. It is convenient
to quantize the dot spin along the z direction in the co-
ordinate system defined by êex � �n̂nL � n̂nR�=jn̂nL � n̂nRj,
êey � �n̂nL 
 n̂nR�=jn̂nL 
 n̂nRj, and êez � �n̂nR � n̂nL�=
jn̂nR � n̂nLj. The tunnel Hamiltonian, then, is

HT;L �
t���
2

p
X
k

�ei�=4ayLkc" � e

i�=4ayLkc# � H:c:�; (1)

and HT;R is the same but with L ! R and �! 
�.
Because of tunneling the dot level acquires a finite width
� � 2�jtj2N, whereN � NL � NR is the density of states
of the majority spins of the left and right leads.

With this choice of the quantization axis, the model
studied here appears similar to those for Aharonov-
Bohm interferometers which contain a single-level QD
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in each arm [13–15]. In the present case, the two ‘‘arms’’
are labeled by the spin � �"; # along the z direction, and
the Aharonov-Bohm phase due to an enclosed magnetic
flux corresponds to the angle � between the leads’ mag-
netizations. The limit U ! 1 of the present model is, in
fact, equivalent to the one studied in Sec. IV. C. of
Ref. [14].

Linear conductance and average spin.—We make use
of the analogy between the quantum-dot spin valve and
the Aharonov-Bohm interferometer and express the cur-
rent in terms of Green’s functions of the dot electrons, as
shown in Eq. (4.3) of Ref. [14]. Here, we are interested in
first-order transport in �, for which the linear-response
conductance Glin � �@I=@V�jV�0 simplifies to [16]

Glin �
e2

h
�
Z
d!

�
ImGret

## �!�f
0�!� � sin

�
2
f�!�

@G>#" �!�

@�eV�

� sin
�
2
�1
 f�!��

@G<#" �!�

@�eV�

�
: (2)

Here, f�!� is the Fermi function, G��0 �!� are the
Fourier transforms of the Green’s functions G>��0 �t� �

ihc��t�c

y
�0 �0�i, G<��0 �t� � ihcy�0 �0�c��t�i, and Gret

��0 is the
usual retarded Green’s function. Contributions involving
ImGret

"" �!�, G
>
"# �!�, and G<"# �!� are accounted for in the

prefactor 2. Since � already appears explicitly in front of
the integral, all Green’s functions are to be taken to zeroth
order in �. In this limit, we find 
�1=��ImGret

## �!� �

�P0
0 � P

#
#�#�!
 �� � �P"

" � P
d
d�#�!
 �
U�, G>#" �!� �

2�iP#
"#�!
 �
U�, and G<#" �!� � 2�iP#

"#�!
 ��,
where P$$0 � hj$0ih$ji are elements of the stationary den-
sity matrix (to zeroth order in �) of the quantum-dot
subsystem, with $; $0 � 0 (empty dot), "; # (singly occu-
pied dot), and d (doubly occupied dot).

The main task is now to determine these density ma-
trix elements to zeroth order in �. They contain as well
the information about the average occupation and spin on
the QD. The diagonal matrix elements, P$$, are nothing
but the probabilities to find the QD in state $, i.e., the dot
is empty with probability P0

0, singly occupied with P1 �

P"
" � P

#
#, and doubly occupied with Pdd. A finite spin can

emerge only for single occupancy. The average spin S �
�Sx; Sy; Sz� is related to the off-diagonal matrix element P#

"

via Sx � ReP#
", Sy � ImP#

", and Sz � �1=2��P"
" 
 P

#
#�.

It is remarkable that on the right-hand side of Eq. (2)
derivatives of Green’s function with respect to bias volt-
age V appear. As a consequence, not only the equilibrium
density matrix elements enter the linear conductance, but
also linear corrections in V are involved. In equilibrium,
V � 0, the density matrix is diagonal with P0

0 � 1=Z,
P"
" � P

#
# � exp�
'��=Z, Pdd � exp�
'�2��U��=Z,

with Z � 1� 2 exp�
'�� � exp�
'�2��U�� and ' �
1=�kBT�. As a consequence, the average spin on the QD
vanishes at V � 0 [17]. With applied bias voltage, though,
a finite spin can accumulate, which yields a finite
�dS=dV�jV�0.
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We now determine the needed density matrix elements
by using the real-time transport theory developed in
Ref. [18]. The starting point is the generalized stationary
master equation in Liouville space,

��$1

 �$2�P

$1
$2 �

X
$0
1;$

0
2

P
$01
$02
�
$0
1;$1

$0
2;$2

� 0; (3)

where $1 and $2 label the QD states, and �$1 and �$2
are

the corresponding energies. The matrix elements P$1
$2

of
the density matrix are connected to each other in Eq. (3)
by terms �

$0
1;$1

$0
2;$2

which can be viewed as generalized
transition rates in Liouville space. They are defined as
irreducible self-energy parts of the propagation in
Liouville space and are represented as diagram blocks
on a Keldysh contour. For a detailed derivation of this
diagrammatic language, the generalized master equation,
and the rules on how to calculate a diagram we refer to
Ref. [18].

In the following, we write P � �PP� P̂P� � � � and � �
���� �̂�� � � � , where �PP and ��� denote the equilibrium
limits, and P̂P and �̂� are the linear corrections in V.
Using the symmetry of the model, we find the relations
�PP$

0

$ � �PP~$$0

~$$ and ���$
0;$000

$;$00 � ���~$$0;~$$000

~$$;~$$00 and P̂P$
0

$ � 
P̂P~$$0

~$$ and

�̂�$
0;$000

$;$00 � 
�̂�~$$0;~$$000

~$$;~$$00 , where ~$$ is obtained from $ by the

transformation "$# . For transitions from diagonal states
in Liouville space to diagonal ones we find �̂�$;$

0

$;$0 � 0.
Finally, we drop all � terms which connect states in
Liouville space that are not compatible, at least to lowest
order in�. It turns out that it is sufficient to specify Eq. (3)
for $1 � $2 �# as well as for $1 �# , $2 �" . For the
linear correction in V we get

0 � P̂P#
#
���#;#
#;# � P̂P

#
"�
���#;#
";# 


���";#
#;#�; (4)

0 � P̂P#
"
���#;#
";" � P̂P

#
#�
���#;#
#;" 


���";#
";"� �

�PP0
0�̂�

0;#
0;"

� �PP#
#��̂�

#;#
#;" � �̂�";#

";"� � �PPdd�̂�
d;#
d;": (5)

We evaluate all the necessary diagrams �
$0
1;$1
$0
2;$2

explicitly.
Eventually, we find the solution

P̂P #
" �

i
4

eV
kBT

�PP1cos
2(��� sin

�
2

(6)

and P̂P#
# � 
P̂P"

" � iP̂P
#
" tan(���. We used the definition

tan(��� �
A

1
 f��� � f���U�
cos
�
2
; (7)

where A � 1
�Ref��12 � i�'�=2��� 
�� 12 � i�'���U�=

2���g, and��x�denotes the digamma function.This means
that the spin accumulated in the QD is (for eV � kBT)

jSj �
�����������������
S2y � S2z

q
�
eV
4kBT

�PP1 cos(��� sin
�
2
; (8)

with (��� being the angle enclosed by the quantum-dot
spin and the y axis, tan(��� � Sz=Sy.
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FIG. 2. Upper panel: Linear conductance (normalized by
�=kBT and plotted in units of e2=h) as a function of level
position � for five different angles �. Middle panel: Derivative
of accumulated spin S with respect to bias voltage V normal-
ized by kBT. Lower panel: angle ( between the quantum-dot
spin and the y axis. In all panels we have chosen the charging
energy U=kBT � 10 and half-metallic leads.
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With the result for P̂P#
" we are able to obtain the linear

conductance. It can be written in the compact form

Glin � Glin;max

�
1
 cos2(���sin2

�
2

	
: (9)

This equation together with the condition for (���,
Eq. (7), is the central result of this paper. The conduc-
tance is maximal for parallel magnetization, � � 0. Its
value is Glin;max � ��e2=h���=kBT��1
 f���U�� �
f����1
 f��� � f���U��=�f��� � 1
 f���U��.

We can straightforwardly generalize our theory to al-
low for arbitrary spin polarization p � �Nmaj 
 Nmin�=
�Nmaj � Nmin� in the leads. In this case, we get
Glin=Glin;max�1
p2cos2(p���sin

2��=2� with tan(p����
p tan(p�1���.

A reduction of the spin-valve effect has also been
found for hybrid systems of ferromagnets with
Luttinger liquids [19] or normal metals [20]. Both its
physical origin and the � dependence of the conductance
are different from our proposal, though.

Results and discussion.— It is interesting to analyze
how Coulomb interaction in the dot affects the spin
accumulation in our model. In the absence of charging
energy, U � 0, we find A � 0 and ( � 0, and the accu-
mulated spin is along the y direction, i.e., along n̂nL 
 n̂nR.
A finite charging energy, however, yields a rotation of the
quantum-dot spin within the y-z plane by an angle (,
accompanied by a reduction of the total accumulated spin
by cos(. The origin of the torque responsible for this spin
rotation is an interaction-dependent effective spin ex-
change of the quantum-dot spin with the lead spins. In
the subspace of single dot occupation an effective spin
Hamiltonian can be derived from the full model by
means of a Schrieffer-Wolff transformation. If we now
employ a mean-field picture and replace the lead spin op-
erators by their average value, we end up with the simple
effective Hamiltonian Heff � A� cos��=2�Sx for the sub-
space under consideration. In this effective model, a spin
in the y-z plane experiences a torque and starts to precess,
as described by classical Bloch equations. Together with
the rate �1!0��1!d���1
f����f���U�� to dimin-
ish the z component of the quantum-dot spin by changing
the dot state from single occupation to an empty or doubly
occupied dot via tunneling, we get the Bloch equation
dSz=dt�A�cos��=2�Sy
��1!0��1!d�Sz, from which
we can extract the angle (��� of the rotated spin in the
stationary limit dSz=dt � 0, and we recover Eq. (7).

We emphasize that both the rates for changing the
number of dot electrons and the spin precession are of
the same order in �, which is why the angle ( is �
independent. The two types of processes correspond to
two different kinds of diagrams �

$01;$1

$02;$2
. In spin-precession

terms, all four labels $1; $0
1; $

0
2; $2 represent single occu-

pation, "; # . They describe first-order virtual charge fluc-
tuations during which the spin is rotated. In contrast,
tunneling rates which change the number of dot electrons
166602-3
are described by diagrams with $1 � $
0
1 � 0 or $1 �

$0
1 � d or $2 � $

0
2 � 0, or $2 � $

0
2 � d. It is crucial

for a consistent theory of first-order transport to include
both types of diagrams in Eqs. (4) and (5).

The linear conductance as a function of the level en-
ergy � is plotted in the upper panel of Fig. 2 for inter-
action strength U=kBT � 10 and different values of the
angle �. For parallel magnetization, � � 0, there are two
conductance peaks located near � � 0 and � � 
U, re-
spectively. With increasing angle �, transport is more and
more suppressed due to the spin-valve effect. However,
this suppression is not uniform, as would be in the ab-
sence of charging energy. In contrast, the spin-valve
effect is less pronounced in the valley between the two
peaks, where the dot is dominantly singly occupied, and
spin accumulation can occur. As a consequence, the two
peaks move towards each other with increasing �.

The differential spin accumulation dS=dV in units of
kBT is illustrated in the middle panel of Fig. 2. It is clear
that single occupation of the dot is required for spin
accumulation, i.e., the plotted signal is high in the valley
between the two conductance peaks.

As explained above, an effective exchange interaction
between quantum-dot spin and spin of the leads yields a
rotation of the accumulated spin in the y-z plane by an
angle (. The lower panel of Fig. 2 depicts the evolution of
( as a function of the level energy �. This angle is large
in the valley between the conductance peaks, getting
close to ��=2. A special point is � � 
U=2, at which,
due to particle-hole symmetry, the effective exchange
166602-3



0 π 2π
θ

0

0.5

1

G
lin

 / 
G

lin
, m

ax

0

0.5

G
lin

 (
k B

T
/Γ

) 
[e

2 /h
]

ε / k
B
T = -3

ε / k
B
T = -1

ε / k
B
T = 1

ε / k
B
T = 3
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interaction vanishes. As a consequence, ( shows a sharp
transition from positive to negative values, accompanied
with a peak in the accumulated spin.

In the upper panel of Fig. 3 we show the linear con-
ductance as a function of � for four values of �. For
�=kBT � 3 and 1, the dot is predominantly empty, and
the � dependence of the conductance is almost harmonic.
For �=kBT � 
1 and 
3, however, the spin-valve effect
is strongly reduced, and conductance is enhanced, except
in the regime close to antiparallel magnetization, � � �.
The enhancement of conductance is related to the fact that
the spin precession reduces the angle between the accu-
mulated spin and the magnetization direction of the drain
electrode. This is even better illustrated in the lower panel
of Fig. 3 which shows the same curves but normalized to
conductance at parallel magnetization (� � 0). For
�=kBT � 
3, the conductance stays almost flat over a
broad range, and then establishes the spin-valve effect
only in a small region around � � �.

Finally, we comment that a finite spin-flip relaxation
time +sf will reduce the spin-valve effect and limit its
observability to � > +
1

sf [21]. The main prediction of our
theory, the deviation from the cos� law, will not be
affected by +sf , as long as a � dependence is visible.

To summarize, there are two pronounced features in
the linear conductance which proves the spin- precession
proposed in this Letter: (i) the shift of two adjacent
conductance peaks towards each other with increasing
angle � (Fig. 2), and (ii) strong deviation from the cos�
law for the spin-valve effect (Fig. 3).
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