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Asymptotic Properties of Self-Energy Coefficients
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We investigate the asymptotic properties of higher-order binding corrections to the one-loop self-
energy of excited states in atomic hydrogen. We evaluate the historically problematic A60 coefficient for
all P states with principal quantum numbers n � 7 and D states with n � 8 and find that a satisfactory
representation of the n dependence of the coefficients requires a three-parameter fit. For the high-
energy contribution to A60, we find exact formulas. The results obtained are relevant for the inter-
pretation of high-precision laser spectroscopic measurements.
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Bound-state quantum electrodynamics (QED) occu-
pies a unique position in theoretical physics in that it
combines all conceptual intricacies of modern quantum
field theories, augmented by the peculiarities of bound
states, with the experimental possibilities of ultrahigh
resolution laser spectroscopy. Calculations in this area
have a long history, and the current status of theoretical
predictions is the result of continuous effort. The purpose
of this Letter is twofold: first, to present improved evalu-
ations of higher-order binding corrections to the bound-
state self-energy for a large number of atomic states,
including highly excited states with a principal quantum
number as high as n � 8, and second, to analyze the
asymptotic dependence of the analytic results on the
bound-state quantum numbers. Highly excited states
(e.g., with n � 4 to 12) are of particular importance for
high-precision spectroscopy experiments in hydrogen
(for a summary, see for instance, [1]).
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In the analytic calculations, we focus on a spe-
cific higher-order binding correction, known as the
A60 coefficient or ‘‘relativistic Bethe logarithm.’’ We
write the (real part of the) one-loop self-energy shift
of an electron in the field of a nucleus of charge num-
ber Z as

�ESE �
�
�
�Z��4

n3
F�nlj; Z��mc

2; (1)

where F�nlj; Z�� is a dimensionless quantity. In this
Letter, we use natural units with �h � c � m � 1 and
e2 � 4�� (m is the electron mass). The notation nlj is
inspired by the usual spectroscopic nomenclature: n is the
level number, j is the total angular momentum, and l is
the orbital angular momentum.

The semianalytic expansion of F�nlj; Z�� about
Z� � 0 for a general atomic state with quantum num-
bers n, l � 1, and j gives rise to the expression,
F�nlj; Z�� � A40�nlj� � �Z��2�A61�nlj� ln�Z���2 �GSE�nlj; Z��	 �l � 0�; (2)
where GSE�nlj; Z�� ! const as Z�! 0. The limit as
Z� ! 0 of GSE�nlj; Z�� is referred to as the A60 coeffi-
cient, i.e.,

A60�nlj� � lim
Z�!0

GSE�nlj; Z��: (3)

It is this coefficient which has proven to be by far the most
difficult to evaluate [2–7]. Furthermore, the complexity
of the calculation increases sharply with increasing prin-
cipal quantum number n, both due to the more involved
structure of the bound-state wave function (see also
Fig. 1), and due to the necessity of subtracting bound-state
poles that lie infinitesimally close to the photon integra-
tion contour. The atomic states with the highest n for
which analytic results are available today are the 4P
states [9]. In this Letter, we present analytic data for the
A60 coefficient of P states with n � 7 and allD states with
n � 8. For a given n, the calculation is more involved for
nP than for nD, because there is one more term in the
nonrelativistic radial nP wave function than in the corre-
sponding nD wave function (when they are expressed as a
function of the electron-nucleus distance). Essentially,
the number of terms in the radial wave function deter-
mines the complexity of the calculation.

One of the most demanding specific calculations in the
evaluation of A60 is necessitated by a Bethe-logarithm-
type contribution given by the relativistic wave-function
correction F��; this contribution is defined in Eqs. (43)
and (53) of [8]. For 7P and 8D states, we use up to
200 000 terms in intermediate steps in the evaluation of
this correction. Because A60 involves relativistic correc-
tions to the coefficient A40, which in turn is given mainly
by the Bethe logarithm, it is natural to refer to the entire
A60 coefficient as a relativistic Bethe logarithm.
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FIG. 1 (color online). Plot of the radial probability density
r2j �r; �; ��j2 of the nonrelativistic 8D wave function (angular
momentum projection m � 0) in the plane of constant azimuth
� � 0. The calculation of the relativistic Bethe logarithm A60

starts from this nonrelativistic wave function, with relativistic
corrections being taken into account via generalized Foldy-
Wouthuysen transformations [8,9].
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The ‘‘normal Bethe logarithm’’ lnk0�nl� forms part of
the coefficient A40 for which a well-known general for-
mula (see, e.g., Ref. [1]) reads

A40�nlj� � �
1

2��2l� 1�
�

4

3
lnk0�nl�; (4)

where � � 2�l� j��j� 1=2�. Formulas for A61 valid for
P and D states read as follows (see, e.g., Ref. [1]):

A61�nP1=2� �
1

45

�
33�

29

n2

�
; (5)

A61�nP3=2� �
2

45

�
9�

7

n2

�
; (6)
TABLE I. A60 coefficients for P1=2, P3=2, D3=2, and D5=2 states (n
is implicitly defined in Eq. (9) and represents the low-energy cont

n A60�nP1=2� L�nP1=2�

2 �0:998 904 402�1� �0:795 649 812�1�
3 �1:148 189 956�1�a �0:944 288 447�1�
4 �1:195 688 142�1� �0:997 810 211�1�
5 �1:216 224 512�1� �1:023 991 781�1�
6 �1:226 702 391�1� �1:039 079 399�1�
7 �1:232 715 957�1� �1:048 800 134�1�

n A60�nD3=2� L�nD3=2�

3 0.005 551 575(1) 0.021 250 354(1)
4 0.005 585 985(1) 0.022 882 528(1)
5 0.006 152 175(1) 0.023 759 683(1)
6 0.006 749 745(1) 0.024 294 690(1)
7 0.007 277 403(1) 0.024 645 479(1)
8 0.007 723 850(1) 0.024 886 986(1)

aWe take the opportunity to correct a computational error for th
�1:14768�1� was given.
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A61�nlj� �
32�3� l �l�1�

n2
�

3
Q

3
m��1�2l�m�

�l � 2�: (7)

Note that A61�nlj� ! const for n! 1 at constant l and j.
It is the purpose of this Letter to present new results for
the A60 coefficients. Details of our calculations will be
presented in a forthcoming article [10]. It has been ob-
served previously by Karshenboim [11] that the n depen-
dence of the A60�nP� coefficients can be fitted to a
satisfactory accuracy by an �n2 � 1�=n2-type model, and
a two-parameter fit has been employed for the n depen-
dence of the S-state coefficients A60�nS1=2� [12]. Our data
for P states in Table I are roughly consistent with this
�n2 � 1�=n2 model.

For the atomic states under investigation, the self-
energy contribution due to hard virtual photons (high-
energy part) obtained by the � method [6,8–10] is

FH�nlj; Z�� � �
1

2��2l� 1�
� �Z��2

�

�
K�

C

�
� A61 ln�2�� �O���

�
�   :

(8)

The ellipsis denotes higher-order terms, which are irrele-
vant for the current investigation. In Eq. (8), K and C, as
well as A61, are state-dependent coefficients. For concrete
evaluations of the high-energy part concerning specific
atomic states, see Eqs. (18) and (19) of [8] and Eqs. (55)–
(58) of [9]. The low-energy part assumes the form

FL�nlj; Z�� � �
4

3
lnk0�nl� � �Z��2

�

�
L�

C

�
� A61 ln

�
�

�Z��2

�
�O���

�
; (9)
� 2; . . . ; 7 for P states, and n � 3; . . . ; 8 for D). The quantity L
ribution to A60.

A60�nP3=2� L�nP3=2�

�0:503 373 464�1� �0:584 516 780�1�
�0:597 569 388�1� �0:693 566 427�1�
�0:630 945 796�1� �0:730 579 137�1�
�0:647 013 509�1� �0:747 615 653�1�
�0:656 154 893�1� �0:756 897 499�1�
�0:662 027 568�1� �0:762 622 956�1�

A60�nD5=2� L�nD5=2�

0.027609 989(1) 0.019188 397(1)
0.031411862(1) 0.020 710 720(1)
0.033 077 571(1) 0.021 511798(1)
0.033 908 493(1) 0.021 975 925(1)
0.034 355 926(1) 0.022 264 036(1)
0.034 607 492(1) 0.022 452 259(1)

is result as previously reported in Ref. [9], where a value of
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FIG. 3 (color online). The analog of Fig. 2 for D3=2 and D5=2
states. The minimum in A60;H�nD3=2� near n � 5 is determined
by the exact formulas (7) and (12c).

FIG. 2 (color online). The plots show the dependence on the
principal quantum number n of the high- and low-energy parts
of the A60 self-energy coefficient, as well as their sum (A60).
The curves for the high-energy contribution A60;H represent the
exact results (5)–(7), (11), and (12), with n being generalized to
a continuous variable (only integer n values have physical
significance). The smooth curves for the low-energy parts
A60;L � L result from a three-parameter fit of the data in
Table I to the function in (13); the fit parameters are given in
Table II. The curves in the lower row represent the total result
for A60 � A60;H � A60;L.
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where we omit terms that are irrelevant at relative order
�Z��2 in the evaluation of F�nlj; Z��. A detailed expla-
nation of the � method will be given in [10]. The depen-
dence on C cancels when the high- and low-energy parts
are added. Specifically, we have

A60 � K� A61 ln2�L: (10)

Upon inspection of (8) and (9), we identify

A60;H � K� A61 ln2 (11)

as the high-energy contribution to A60, and A60;L � L as
the low-energy contribution (see Figs. 2 and 3 ).

We obtain the following general formulas for K:

K�nP1=2� �
637

1800
�

1

4n
�

767

5400n2
; (12a)

K�nP3=2� �
2683

7200
�

1

16n
�

2147

5400n2
; (12b)

K�nD3=2� � �
157

30 240
�

3

80n
�

3007

37 800n2
; (12c)

K�nD5=2� �
379

18 900
�

1

60n
�

1759

18 900n2
: (12d)

All of these formulas are consistent with a limit K !
163001-3
const as n! 1 for constant l and j. The n dependence of
the nonrelativistic L�nlj� contributions as listed in Table I
can be approximated very well using a three-parameter fit
inspired by the above structure found for the high-energy
K contributions. We find

L �nlj� � L1�lj� �
L2�lj�

n
�
L3�lj�

n2
; (13)

where L1, L2, and L3 assume values as listed in Table II
for the series of states under investigation. The n depen-
dence of the low-energy contributions L is smoother than
the corresponding curves for the high-energy part (see
Figs. 2 and 3). The excellent agreement of the fits with the
numerical values of A60;L, together with our exact results
for the high-energy part as given by Eqs. (5)–(7), (11),
and (12), could suggest a constant limit of A60�nlj� as
n! 1 for constant l and j.

For Rydberg states with the highest l possible for given
n (i.e., l� �ll� n� 1), our results are consistent with

lim
n!1

A60�n�llj� � 0 for �ll � n� 1; j � n� 1� 1=2; (14)

which is plausible to suggest as a conjecture. The con-
jecture is indicated by the trend in the numbers (j �
�ll� 1=2): A60�3D3=2� � 0:005 551 573�1�, A60�4F5=2� �
0:002 326 988�1�, A60�5G7=2� � 0:000 814 415�1�; as
well as in the results (j � �ll� 1=2): A60�3D5=2� �
0:027 609 989�1�, A60�4F7=2� � 0:007 074 961�1�,
A60�5G9=2� � 0:002 412 929�1�. The magnitude of
A60�n�llj� appears to decrease faster than 1=n. In general,
relativistic corrections acquire at least one more inverse
power of n when n � l� 1, j � n� 1� 1=2, and n
large, than S or P states of the same n. This can, for
163001-3



TABLE II. Coefficients L1, L2, and L3 that result from a
least-squares fit of the n dependence of our data for L in Table I
(see also Figs. 2 and 3). The value of L1 from this global fit
should approximate the limit limn!1L�nlj� in Eq. (13),
although it is not necessarily the best estimate.

State L1 L2 L3

P1=2 �1:082 0.0966 0.950
P3=2 �0:775 �0:0232 0.811
D3=2 0.0264 �0:00952 �0:0175
D5=2 0.0235 �0:00568 �0:0220
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example, be seen in the relativistic correction of order
�Z��4 to the Schrödinger-Coulomb electron energy [Eqs.
(2)–(87) of [13]],

Enj �m�
�Z��2m

2n2
�

�Z��4m

n3

�
1

2j� 1
�

3

8n

�
�O��Z��6	:

For j � n� 1� 1=2, this relativistic term acquires an
additional inverse power of n. Our results suggest that
analogous statements hold for radiative corrections given
by relativistic Bethe logarithms.

We have presented results of a calculation of higher-
order binding corrections to the one-loop self-energy for
highly excited hydrogenic atomic levels (see Table I).
Calculational difficulties induced by the more complex
analytic structure of the wave functions have been a
severe obstacle for evaluations of relativistic Bethe loga-
rithms at high n, and no prior results are available for
A60 for any state with n > 4 (see Ref. [9]). Intermediate
expressions contained up to 200 000 terms; without a
computer, this work would have been impractical. Our
calculation is split into a high- and a low-energy part. We
find that the dependence of the low-energy contribution to
A60 on the principal quantum number of the atomic state
under investigation can in many cases be represented
accurately using a three-parameter fit [see Eq. (13) and
the data in Table II]. As suggested by the exact formulas
for the high-energy part given in Eq. (12) and the curves
in Figs. 2 and 3, a fit with less than three parameters
cannot be assumed to lead to a satisfactory representation
of A60. Our final results for A60 are given in Table I. We
establish that the magnitude of A60 decreases rapidly for
Rydberg states with the highest possible angular momen-
tum for each principal quantum number. Our calculations
improve the knowledge of the self-energy of an electron
bound to a nucleus [see Eqs. (1)–(3) and Table I]. They are
motivated by the dramatically increasing precision of
laser spectroscopy [14–17], which is rapidly approaching
the 1 Hz level of accuracy. For the determination of
163001-4
fundamental constants from high-resolution spectros-
copy, frequency measurements of at least two different
transitions have to be performed. Highly excited, slowly
decaying D states are attractive because they can be
excited out of S states via two-photon resonance [1,14].
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