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All-Versus-Nothing Violation of Local Realism for Two Entangled Photons
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It is shown that the Greenberger-Horne-Zeilinger theorem can be generalized to the case with only
two entangled particles. The reasoning makes use of two photons which are maximally entangled both
in polarization and in spatial degrees of freedom. In contrast to Cabello’s argument of ‘‘all versus
nothing’’ nonlocality with four photons [Phys. Rev. Lett. 87, 010403 (2001)], our proposal to test the
theorem can be implemented with linear optics and thus is well within the reach of current experimental
technology.
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local realism for two-particle entangled states in higher-
dimensional Hilbert spaces was found [8,9]. For the

entangled state j� i12 � �1= 2��jHi1jVi2 � jVi1jHi2�,
where jHi (jVi) stands for photons with horizontal
Bell’s theorem [1], which is derived from Einstein,
Podolsky, and Rosen’s (EPR’s) notion of local realism
[2], represents the most radical departure of quantum
mechanics (QM) from one’s classical intuitions. On the
one hand, Bell’s inequalities (BI) state that certain statis-
tical correlations predicted by QM for measurements on
two-particle ensembles cannot be understood within a
realistic picture based on local properties of each indi-
vidual particle. On the other hand, an unsatisfactory
feature in the derivation of BI is that such a local realistic
and, thus, classical picture can explain perfect correla-
tions and is only in conflict with statistical prediction of
the theory.

Strikingly, ‘‘Bell’s theorem without inequalities’’ has
been demonstrated for multiparticle Greenberger-Horne-
Zeilinger (GHZ) states [3–5], where the contradiction
between QM and local realistic theories arises even for
definite predictions. The quantum nonlocality can thus, in
principle, be manifest in a single run of a certain mea-
surement. This is known as the ‘‘all versus nothing’’ proof
of Bell’s theorem. In addition, the GHZ contradiction
applies for all (100%) multiparticle systems that are in
the same GHZ state. In the sense that it is for definite
predictions and for all systems, the GHZ theorem repre-
sents the strongest conflict between QM and local realism.
However, the GHZ reasoning requires at least three par-
ticles and, consequently, three spacelike separated re-
gions (observers). This can be seen as a sort of three-
particle quantum nonlocality, which differs from the
two-particle quantum nonlocality as implied in usual BI.

Then Hardy’s argument of ‘‘quantum nonlocality
without inequalities’’ for nonmaximally entangled bipar-
ticle states [6] came as a surprise. Now it is known as ‘‘the
best version of Bell’s theorem’’ [7] for two-dimensional
two-particle systems. However, compared to the GHZ
case, in Hardy’s proof only a fraction ( & 9%) of the
photon pairs shows a contradiction with local realism.
Most recently, another way to reveal sharper violations of
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two-particle entangled states of high-dimensionality,
the violation of local realism has more resistance to noise,
but is still statistical. Motivated by Hardy and the high-
dimensional versions of Bell’s theorem, one may ask the
following: Can the conflict between QM and local realism
arise even for the definite predictions and for all (100%)
of the photon pairs in the same entangled state?

In this Letter, we answer the question affirmatively by
demonstrating an all-versus-nothing nonlocality for two
photons which are maximally entangled both in polar-
ization and in spatial (path) degrees of freedom. Such a
‘‘double entanglement’’ plays a crucial role in our dem-
onstration. From a formal aspect, our demonstration is a
further development of Cabello’s [10,11] elegant proof of
quantum nonlocality without inequalities for two observ-
ers who possess two pairs of maximally entangled qubits,
i.e., four two-level particles. Lvovsky demonstrated that
the nonlinear optics at a single-photon level is required
for a demonstration of Cabello’s quantum nonlocality
without implicit assumption of noncontextuality [12].
Unfortunately, such an experimental test of Cabello’s
quantum nonlocality is beyond the present level of quan-
tum optical technology. By contrast, the experiment pro-
posed here has two advantages over Cabello’s proposal.
First, the observers need to possess only one pair of
entangled photons at a time and, second, it can readily
be done as it needs only linear optics elements.

Currently, the most widely used reliable source of
polarization-entangled photons is parametric down-
conversion in a nonlinear optical crystal [13]. Here we
need two-photon states that are maximally entangled
both in polarization and in path degrees of freedom.
Figure 1 shows the setup [14,15] for generating pairs of
polarization and path entangled photons. A pump pulse
passing through the crystal can create, with a small
probability, entangled pairs of photons in the spatial
(path) modes d1 and u2. For definiteness, we assume
that the entangled photon pairs are in the polarization-
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FIG. 1. Setup for generating pairs of photons entangled both
in polarization and path.
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(vertical) polarization. Now if the pump is reflected
through the crystal a second time, then there is another
possibility for producing entangled pairs of photons into
the path modes u1 and d2 that are opposite to the first
modes d1 and u2. The two possible ways of producing the
entangled photon pairs may interfere [14]. By properly
adjusting the distance between the mirror and the crystal,
the setup in Fig. 1 generates the doubly entangled two-
photon state [15]:

j�i12 �
1
2�jHi1jVi2 � jVi1jHi2��jui1jdi2 � jdi1jui2�;

(1)

which is just the desired state entangled maximally both
in polarization and in path. Here photon-1 and photon-2
are, respectively, possessed by two observers, Alice and
Bob, who are spacelike separated; jui and jdi denote two
orthonormal path states of photons. With emphasis, we
note that the state (1) indeed corresponds to the case
where there is one and only one pair production after
the pump pulse passes through the BBO crystal twice.

One can define the following Pauli-type operators for
both the polarization and the path degrees of freedom:

�x � jHihVj 	 jVihHj; �z � jHihHj � jVihVj;

�0
x � juihdj 	 jdihuj; �0

z � juihuj � jdihdj:
(2)

For convenience and clarity, in the following we denote
zi � �zi, xi � �xi, z0i � �0

zi, x
0
i � �0

xi (i � 1; 2), and use
��� to separate operators or operator products that can be
identified as EPR’s local ‘‘elements of reality.’’ Then one
can easily check the following eigenequations:

z1 � z2j�i12 � �j�i12; z01 � z
0
2j�i12 � �j�i12; (3)

x1 � x2j�i12 � �j�i12; x01 � x
0
2j�i12 � �j�i12; (4)

z1z01 � z2 � z
0
2j�i12 � j�i12; (5)

x1x01 � x2 � x
0
2j�i12 � j�i12; (6)

z1 � x
0
1 � z2x

0
2j�i12 � j�i12; (7)

x1 � z01 � x2z
0
2j�i12 � j�i12; (8)

z1z01 � x1x
0
1 � z2x

0
2 � x2z

0
2j�i12 � �j�i12: (9)

Equations (3)–(9) contain only local operators, i.e., (z1,
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z01, x1, x01, z1z
0
1, x1x

0
1, z1 � x

0
1, x1 � z

0
1, and z1z01 � x1x

0
1) for

Alice and (z2, z02, x2, x02, z2 � z
0
2, x2 � x

0
2, z2x02, x2z

0
2, and

z2x02 � x2z
0
2) for Bob. In particular, Eqs. (3)–(9) allow

Alice (Bob) to assign values with certainty to Bob’s local
operators z2, z02, x2, x

0
2, z2x02, and x2z02 (Alice’s local

operators z1, z01, x1, x01, z1z
0
1, and x1x01) by measuring her

local observables (his local observables) without in any
way disturbing Bob’s (Alice’s) photon. It is the idea of
EPR’s criterion of elements of reality to establish a local
realistic interpretation of the quantum-mechanical re-
sults (3)–(9) by assuming that the individual value of
any operator (z1, z01, x1, x

0
1, z1z01, and x1x01) at Alice’s

side and (z2, z02, x2, x
0
2, z2x02, and x2z02) at Bob’s side is

predetermined. These predetermined values are denoted
by v�zi�, v�z0i�, v�xi�, v�x

0
i�, v�z1z

0
1�, v�x1x

0
1�, v�z2x

0
2�, and

v�x2z
0
2� with v � �1. To be consistent with Eqs. (3)–(9),

local realistic theories thus predict

v�z1�v�z2� � �1; v�z01�v�z
0
2� � �1; (10)

v�x1�v�x2� � �1; v�x01�v�x
0
2� � �1; (11)

v�z1z01�v�z2�v�z
0
2� � 1; v�x1x01�v�x2�v�x

0
2� � 1;

(12)

v�z1�v�x01�v�z2x
0
2� � 1; v�x1�v�z01�v�x2z

0
2� � 1;

(13)

v�z1z
0
1�v�x1x

0
1�v�z2x

0
2�v�x2z

0
2� � �1: (14)

But, in fact, Eqs. (10)–(14) are mutually inconsistent:
Multiplying Eqs. (10)–(13), one gets v�z1z01�v�x1x

0
1� 


v�z2x
0
2�v�x2z

0
2� � 1 due to the fact that v2�zi� � v2�z0i� �

v2�xi� � v2�x0i� � 1, and this is then in conflict with
Eq. (14). Thus, the quantum-mechanical predictions
(3)–(9) are incompatible with the ones imposed by local
realistic theories. The contradiction between QM and
local realism occurs for definite predictions and for all
(100%) of the photon pairs. This completes the demon-
stration of an all-versus-nothing nonlocality for our two-
photon case.

An important point deserves further comment. It is
well known that the original GHZ argument needs at
least three spatially separated particles in order to estab-
lish the properties used in the argument as EPR elements
of reality. Therefore the question arises whether it is also
possible to achieve the same in a two-particle situation as
suggested in this paper. We are able to achieve this goal
for two reasons: First, the number of variables used in the
argument is enlarged compared to the original GHZ
argument. Second, and most importantly, the nine vari-
ables can be arranged in three groups of three each, where
the three variables of each group are measured by one and
the same apparatus when establishing them as EPR ele-
ments of reality, as we will show below. This eliminates
the necessity of an argument based on counterfactuality
160408-2
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as it is not necessary to assume any of these variables to
be independent of experimental context.

Actually, the above argument can be understood from
another perspective. By defining jHijui � j0i, jHijdi �
j1i, jVijui � j2i, and jVijdi � j3i, j�i12 can be rewritten
as j�i12 �

1
2 �j0i1j3i2 � j1i1j2i2 � j2i1j1i2 	 j3i1j0i2�,

which is, in fact, a two-particle maximally entangled
state in a four-dimensional Hilbert space. This then im-
plies that the GHZ-type argument has been indeed gen-
eralized to the case with only two entangled four-level
particles. In contrast to the original GHZ proposal, our
scheme requires only two spacelike separated regions.

In a real experiment, the perfect correlations and ideal
measurement devices are practically impossible. To face
this difficulty, a Bell-Mermin inequality for j�i12 is
desirable. Similarly to Ref. [11], one can introduce
the operator O � �z1 � z2 � z01 � z

0
2 � x1 � x2 � x01 � x

0
2 	

z1z
0
1 � z2 � z02 	 x1x

0
1 � x2 � x

0
2 	 z1 � x01 � z2x

0
2 	 x1 �

z01 � x2z
0
2 � z1z01 � x1x

0
1 � z2x

0
2 � x2z

0
2. It can be directly seen

from Eqs. (3)–(9) that O satisfies

O j�i12 � 9j�i12: (15)

However, following Ref. [11], local realistic theories pre-
dict the observed values of O

hOiLRT � 7; (16)

which is in contradiction with the quantum-mechanical
prediction (15). For observing the violation of the in-
equality (16), one needs the doubly entangled state
with a visibility better than 7=9 � 77:8%. Here, we would
like to mention that BI for ‘‘qudits’’ have more resistance
to noise and the visibility can be reduced to about 69%
for four-dimensional systems [8,9].

Though the above argument is formally similar to
the reasoning of Cabello’s theorem [10,11], at this stage
the advantages of our scheme are already manifest. Our
argument works for two entangled photons, whose path
and polarization degrees of freedom are used. Experi-
mentally, manipulating a single pair of entangled photons
is much easier than manipulating two pairs. These fea-
tures are essential for an experimental test of the GHZ-
type theorem proposed here.

We now further discuss the noncontextuality issue to
validate our all-versus-nothing quantum nonlocality ar-
gument. In the argument, the same operators may appear
in different equations (3)–(9). For example, z1z01 and x1x01
not only appear separately in Eqs. (5) and (6), but also
appear jointly in Eq. (9). In order for the argument to
hold, it is, however, necessary to assign always a single
value to the same operator, though it can appear in differ-
ent equations. Therefore, one either has to assume non-
contextuality (e.g., measurement of z1z01 does not disturb
the value of x1x01 and vice versa) or one has to be able to
measure z1z01, x1x

0
1, and z1z01 � x1x

0
1 with the same appara-

tuses. Lvovsky noticed that this would then require quan-
tum controlled-NOT (CNOT) operation to apply on all
160408-3
(100%) photon pairs to demonstrate Cabello’s quantum
nonlocality in the original proposal with two-photon
pairs. Unfortunately, this requires nonlinear optics.

This CNOT operation is equivalent to making a com-
plete Bell-state discrimination (see Refs. [10–12]), in
which the Bell states are j��i � �1=

���

2
p

��jHijVi �
jVijHi� and j��i � �1=

���

2
p

��jHijHi � jVijVi�. It has
been well known initially in the context of quantum
teleportation [16–18] that such a full Bell-state measure-
ment is impossible with only linear optics and necessi-
tates nonlinear optical interactions at a single-photon
level [19], which is very challenging experimentally.
Thus, an experimental test of Cabello’s nonlocality
cannot be achieved by existing technology [12].

However, within our two-photon proposal, the above
problem does not exist since quantum CNOT operations
can be easily implemented between two different degrees
of freedom of single photons. Actually, measuring z1z01 �
x1x01 in the present scheme is equivalent to performing a
complete Bell-state measurement, with the four Bell
states

j �i �
1
���

2
p �jHijdi � jVijui�;

j��i �
1
���

2
p �jHijui � jVijdi�;

(17)

instead of j��i and j��i. The complete discrimination
of the four Bell states in Eqs. (17) has been realized in the
‘‘two-particle analog’’ of the quantum teleportation ex-
periment performed in Rome [18]. Such a complete Bell-
state discrimination can be accomplished with linear
optics and almost 100% efficiency.

Thus, the difficulty of measuring simultaneously z1z01,
x1x

0
1, and z1z

0
1 � x1x

0
1 has been eliminated by our two-

photon proposal. We now consider the question of how
to measure the quantities such as z1, x01, and z1 � x01 in our
two-photon scheme. It is obvious that the measurements
of z1, x01, and z1 � x01 have to be performed on the single-
photon possessed by Alice. Therefore, in order to avoid
the noncontextuality assumption, one must design an
apparatus such that it can give the measurement results
of z1, x01, and z1 � x01 simultaneously.

Similar considerations would thus lead to the following
six apparatuses (similar apparatuses have been proposed
by Simon et al. [20] in a different context), which are
sufficient to solve the problem just mentioned. Apparatus
1 measures z1, x01, and z1 � x01; apparatus 2 measures x2, x02,
and x2 � x02; apparatus 3 measures z01, x1, and x1 � z01;
apparatus 4 measures z2, z02, and z2 � z

0
2; apparatus 5

measures z1z01, x1x
0
1, and z1z01 � x1x

0
1; apparatus 6 measures

z2x
0
2, x2z

0
2, and z2x

0
2 � x2z

0
2. Fortunately enough, each of

these apparatuses measures different local observables
and, more importantly, the six apparatuses can be real-
ized without any mutual conflict.

Figures 2(a)–2(d) show the first four apparatuses,
which require only simple linear optical elements [e.g.,
160408-3
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FIG. 2. Six apparatuses for measuring z1, x01, and z1 � x01 (a);
x2, x02, and x2 � x02 (b); z01, x1, and x1 � z01 (c); z2, z02, and z2 � z02
(d); z1z01, x1x01, and z1z01 � x1x

0
1 (e); z2x02, x2z02, and z2x02 � x2z

0
2 (f).

By �, we mean �1.

P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2003VOLUME 90, NUMBER 16
the beam splitters (BS), polarizing beam splitters (PBS),
and half wave plates (HWP) rotated at 45�] and single-
photon detectors. Note that a PBS reflects V photons and
transmitsH photons, and a BS (HWP) affects the follow-
ing transformations: jui ! �jui 	 jdi�=

���

2
p

and jdi !
�jui � jdi�=

���

2
p

(jHi ! �jHi 	 jVi�=
���

2
p

and jVi ! �jHi �
jVi�=

���

2
p

). Let us consider, e.g., apparatus 1. Since ap-
paratus 1 measures z1 and x01 simultaneously, it actually
also gives the measurement result of z1 � x01. Figures 2(e)
and 2(f) show the last two apparatuses, each of which is
made up of three of the first four apparatuses. Apparatus 5
(apparatus 6) measures z1z01 and x1x

0
1 (z2x02 and x2z

0
2)

simultaneously, and thus gives also the readout of z1z01 �
x1x

0
1 (z2x02 � x2z

0
2). It is worthwhile to note that apparatus

2(e) can be replaced with the apparatuses discriminating
the four Bell states in Eq. (17). For apparatus 2(f), the
situation is similar.

In summary, we have demonstrated an all-versus-
nothing nonlocality for two photons, which are maxi-
mally entangled both in polarization and in path degrees
of freedom. Since the required measurement of local
operators can be implemented with linear optics, our
two-photon proposal is well within the reach of current
quantum optical technology. Note that, until now, there is
only one experiment [5] performed to test the GHZ non-
locality, a kind of all-versus-nothing nonlocality. In this
respect, the feasible experimental scheme, as we sug-
gested in this work, is highly desirable.
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Finally, it is interesting to point out that using a single-
photon as a two-qubit (polarization and path qubits)
system may find important applications in other contexts,
e.g., testing the Kochen-Specker theorem [21] with single
particles [20,22], quantum computing [23], quantum
cryptography [24], and entanglement purification [15].
A recent study shows that the path-polarization entangled
two-photon states (1) can also be used to implement
deterministic and efficient quantum cryptography [25].
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