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Forces between Conducting Surfaces due to Spatial Variations of Surface Potential
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We describe analytical and numerical methods for calculating forces between conductors due to
variations of electrostatic surface potential across their surfaces. In the simple case where the spatial
variation of surface potential gives rise to uniform power spectra, we show that the electrostatic force
can be large in comparison with, and scale in approximately the same way with distance of closest
approach as, the Casimir force. Patch potentials that are consistent with existing experimental data
could give rise to forces with a magnitude of 4% of the Casimir force at separations of 0:1 �m.
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potential variations give rise to forces that vary as 1=a
where a is the minimum separation [7,8]. It is therefore

transparent with a thickness of 42 nm and heated at
120 �C for several hours in vacuum. They deduced the
Introduction.—The electrostatic potential at the sur-
face of a metal relative to its interior depends on the
magnitude of the surface dipole moment per unit area
which, in turn, depends on the separation of the lattice
planes that are parallel to the surface [1]. Variation of the
crystallographic directions exposed at the surface of a
clean polycrystalline metal results in a variation of sur-
face potential. This is referred to as the ‘‘patch effect.’’
Patch potentials are also generated and influenced by
surface contamination and, in the case of alloys, by
variations in chemical composition. Differences in the
mean potential of two connected metals are referred to
as contact potential differences. Forces due to contact
potentials are relatively easily calculated as they lead to
long range electrostatic forces equivalent to those be-
tween the plates of a biased capacitor and will not be
discussed further here.

There is considerable interest at present in perform-
ing ultrahigh sensitivity mechanical experiments [2–6].
All these experiments or applications are sensitive to
the forces between metallic objects and are therefore
susceptible to the electrostatic forces generated by patch-
potential variations. Of particular importance are
Casimir force experiments, as these measure directly
the mechanical pressure resulting from the QED vacuum
state. Here we will only study the implications of electro-
static background forces for Casimir force experiments
where conductor separations are in the range of 0.1 to
1 �m. The general methods developed here can be ap-
plied to all the experiments referenced above.

In an extensive recent review of experimental and
theoretical developments in the Casimir force no mention
was made of the possible influence of forces due to patch-
potential variations [2]. The authors concluded that, at
present, experimental determinations of the Casimir
force have an accuracy of about 1% and speculated on
future improvements of several orders of magnitude. In at
least two separate measurements of the Casimir force it is
explicitly assumed that, in the relevant geometry, patch-
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concluded that these forces can be distinguished from the
Casimir force, which varies essentially as 1=a3. We show
here that this conclusion is not necessarily correct.

Observed variations of surface potentials.—Patch po-
tential variations are specific to the particular sample and
dependent on environmental factors. Spatial variations of
surface potentials are expected to be related to the physi-
cal size of the surface crystallites, which in the case of
bulk metals, are typically of the order of 1 �m. In the
case of thin films, deposited on substrates at temperatures
much less than the melting point of the film, the film is
amorphous, has a nonuniform thickness and the crystal-
lite size is of the same order as the thickness of the film
[9]. Annealing of the film can produce grain structure
that is substantially larger than its thickness. Patch-
potential variations have been measured under various
conditions using vibrating or rotating plate electrometers
[10]. Notably it was shown that large-scale variations in
surface potential were caused by adsorption of contami-
nants which was transient and found to reduce the varia-
tion of surface potential of the clean surfaces [8,11].
Unfortunately the concentration of contaminants may
be unstable or unknown in any particular experiment.

Many experiments use thermally evaporated thin films
of gold [12]. The work functions of gold are 5.47, 5.37, and
5.31 eV for the h100i, h110i, and h111i direction, respec-
tively [13]. If the surfaces are clean and amorphous then
we can assume that they comprise equal areas of these
three crystallographic planes, and the variance, �2

v, of the
potential distribution becomes approximately �90 mV�2.
When annealed, gold thin films form mesa structures
with the h111i crystallographic planes exposed. In this
case, variations of surface potential are presumably gen-
erated by the material lying between the mesas. The size
of the mesas depends on the temperature of the substrate
during the formation of the film.

Sukenik et al., observed rms variations of electric field
due to thermally evaporated gold using the Stark effect in
sodium atoms [14,15]. The films were partially optically
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FIG. 1. Real metallic surfaces are modeled as membranes
of varying dipole moments mi�xi� adjacent to equipotential
substrates.
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magnitude of the surface potentials to be 150 mVassum-
ing the scale of variation to be of the order of the film
thickness. This film thickness is significantly less than the
plasma wavelength and so would not be suitable for deter-
minations of the Casimir force. The plasma wavelength,
�p, of gold is 136 nm.

Calculation of patch forces.—We suppose that we have
two infinite parallel conducting surfaces normal to the z
direction, separated by a distance a, with observable
potential variations, vi� ~xxi�. The two-dimensional corre-
lation functions can be defined as

cij� ~xx� �
ZZ

vi� ~���vj� ~�� � ~xx�d2 ~��; (1a)

with Fourier coefficients

Cii � Vi� ~kk�Vi�� ~kk�: (1b)

We define the symmetric components of the shifted cross-
correlation function as

C12� ~kk; ~��� �
1

2
�V1�� ~kk�V2� ~kk�ei

~kk� ~�� 	 V1� ~kk�V2��~kk�e�i ~kk� ~���;

(1c)

where ~�� is a displacement between the origins of the
coordinate systems ~�� � ~xx2 � ~xx1.

In our model the patch potentials are generated by
planes of dipoles of varying moment per unit area that
lie adjacent to perfectly conducting equipotential surfaces
(see Fig. 1). The substrates represent the electronic states
within the metal that lie at the Fermi surface.

The membranes, of dipole moment m1� ~xx1� and m2� ~xx2�,
are located at z1 � � and z2 � a-�, respectively, and the
grounded planes are located at z � 0 and a. The volume
bounded by the conducting planes is a closed system with
no extra sources of energy. We can calculate the electro-
static energy within the region 0< z< a as

	e �
"0
2

ZZZ
~EE2d2 ~xxdz: (2)
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We now use the identity

r � �� ~EE� � ~EE � r�	�r � ~EE: (3)
The volume integral of the term on the left can be writ-
ten as a surface integral at the boundary of integration
and, recalling that this potential is zero, we can rewrite
Eq. (2) as

	e �
"0
2

ZZZ
�r � ~EEd2 ~xxdz: (4a)

As the only sources of the electrostatic field within the
volume of integration are the dipole layers,

r � ~EE �
�� ~xx�
"0

���z� �zi 	 
��� ��z� �zi � 
���; (4b)

where 2
 is the small separation between the surface
charges that comprise the dipole layer, we obtain

	e �
1

2

X
i�1;2

ZZ
~mmi� ~xxi� � r��zi�d2 ~xxi; (5)

where mi� ~xx� 
 2
�i� ~xx�. We use the method of images to
find the potential, �� ~xx; z�, in the region � � z � a� �.
Each dipole layer produces an infinite set of images,
the sum of the potentials due to these images converges
to give
�� ~xx; z� �
1

�2��2

ZZ cosh�kz��
sinh�kza�

fM1� ~kk� sinh�kz�a� z��ei~kk� ~xx1 �M2� ~kk� sinh�kzz�e
i~kk� ~xx2gd2 ~kk: (6)

Substituting into (5) we find

	e � �
1

2�2��2

ZZ cosh�kz��
sinh�kza�

f�M11 	M22� cosh�kz�a� ��� 	 2M12 cosh�kz��gd2 ~kk; (7)
where the Fourier coefficients of the correlation functions
of the dipole moment distributions are given in an analo-
gous way to Eqs. (1a)–(1c).

In the limit that � ! 0, Eq. (6) is the potential within
the region of interest with boundary potentials v1� ~xx� and
v2� ~xx�. We conclude that in this limit m1� ~xx� � v1� ~xx� and
m2� ~xx� � �v2� ~xx�, explicitly confirming the expectation
that variation in surface potential can be equated to a
variation in the dipole moment per unit area and giving a
strong physical basis for the model. In this limit the
electrostatic energy becomes

	e � �
"0

2�2��2

ZZ kz
sinh�kza�

��C11 	 C22� cosh�kza�

� 2C12�d
2 ~kk: (8)

The force acting between the two infinite planes follows
as Fp � �@	e=@a;
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Fp � �
"0

2�2��

ZZ k2z
sinh2kza

�C11 	 C22

� 2C12 cosh�kza��d2 ~kk: (9)

Provided that the separation of the plates is small
compared to their horizontal extent, we would expect
Eq. (9) to give a good estimate of the force acting between
finite plates in terms of the spatial distributions of surface
potentials. Transverse forces can also be calculated in a
straightforward manner and are finite only when the two
surface potentials are correlated [16].

The favored electrode geometry for the precision de-
termination of the Casimir force is a sphere and a plane
(although we note that a Casimir experiment with paral-
lel plates has been reported in [17]). It is clearly difficult
to apply the above method to such a geometry. However,
provided that the energy of interaction, 	n, between the
planes, is invariant with respect to the lateral translation
of the planes, we can employ the PFT [18]. We calculate
the interaction energy by removing from Eq. (8) the
potential energy at infinite separation, which is simply
the self-energy of the two dipole distributions. We find

	n � �
"0

2�2��2

ZZ kz��C11 	 C22�e�kza � 2C12�

sinh�kza�
d2 ~kk:

(10)

It is now convenient to normalize the correlation and
cross-correlation spectra [Eqs. (1a)–(1c)] by the area, S,
over which the integrals are being evaluated. We then
define ~CCij � Cij=S, where ~CCijare measured in units of
V2=�radm�1�2 and are essentially power spectral den-
sities [4,7]. The PFT then gives the attractive force be-
tween a plane and a convex surface of radius R as

Fs � �
�"0R

�2��2

ZZ kz��~CC11 	 ~CC22�e�kza � 2 ~CC12�

sinh�kza�
d2 ~kk:

(11)

In the limit that kza � 1 Eq. (9) gives the force be-
tween the plates of a biased parallel plate capacitor. In
the same limit Eq. (11) gives the expected expression
for the attractive force between a plane and a sphere for
R � a [19].

In the limit that kza � 1 forces are attractive irrespec-
tive of the relative polarity of the surface dipole distri-
butions. However, in the limit that kza > 1and when
opposite polarities of dipoles are adjacent, a repulsive
force is produced.

In order to handle more general geometries, where the
above methods cannot be applied, we have developed a
discrete element method that enables us to deal with ar-
bitrary surface potential distributions in arbitrary geome-
tries. In analogy with the physical picture presented
above, the surface of a real metallic object is modeled
to be composed of a surface dipole layer and an ideal
equipotential metal surface underneath. Given a particu-
lar surface potential distribution, electrostatic surface
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charges are found on the metallic surfaces so that appro-
priate boundary conditions on the total electric field are
fulfilled. The resulting forces are easily computed.

Estimate of the force due to random variations in patch
potentials.—We will first derive some worst case limits
on the magnitude of the patch force for uncontaminated
surfaces. Using Parseval’s theorem we can relate the
correlation coefficients to the variance

�2
v �

1

S

ZZ
V� ~xx�2d2 ~xx �

1

�2��2

ZZ
~CCii�k�d

2 ~kk: (12)

In order to make progress we will assume a two-
dimensional distribution of voltages whose Fourier coef-
ficients lie within an annulus in two-dimensional k space
(kx, ky) with kmin < jkj< kmax and kz � jkj. We will also
assume that spatial distributions of potentials are uncor-
related which implies that ~CC12 vanishes. The force per
unit area between two parallel plates becomes

fp � �
2"0�

2
v

�k2max � k2min�

Z kmax

kmin

k3

sinh2ka
dk; (13)

and the force between a sphere and a plane becomes

Fs � �
4�"0�2

vR

�k2max � k2min�

Z kmax

kmin

k2e�ka

sinhka
dk: (14)

The integrands in Eqs. (13) and (14) have maximum
values when ka � 1:3 and ka � 0:8, respectively. In
order to examine the worst case we will select the cen-
tral wavelength of the spectrum that maximizes the
forces due to the patch potentials for a nominal separation
of 1�m. We will assume gold surfaces with �2

v �
�90 mV�2 and set the width to extend over a decade in
spatial frequency. This is somewhat arbitrary but not
unphysical. A plot of the resulting fp is shown in
Fig. 2(a). We also plot in Fig. 2(a) the Casimir force per
unit area acting between two plane, parallel plates, fcp �
�(�a���2 �hc=240a4� where (�a� is an approximate em-
pirical factor that reduces the magnitude of the Casimir
effect due to the finite plasma frequency. We take (�a� �
�1	 �8�p=3�a���1 following [20].

At 1 �m separation the patch force varies with sepa-
ration in a way that roughly mimics the Casimir force and
the ratio of the fp=fcp is approximately 11.

Figure 2(b) shows the Casimir and patch-potential
forces as a function of closest separation, a, for the
sphere/plane geometry and a worst case wavelength spec-
tral range between 2.5 and 25�m. In this case the
Casimir force is Fcs � (�a��2�R=3���2 �hc=240a3�. In
the figure we have assumed a radius of the spherical
surface of 10 cm. The ratio of patch to Casimir force is
independent of this choice. Again the patch-potential
variation with separation mimics the Casimir force and
the ratio of patch-field force to Casimir force, Fs=Fcs, is
about 30 at a � 1 �m. In both Figs. 2(a) and 2(b) plots of
the forces expected due to uniform voltage differences
across the conductors are also shown.
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FIG. 2. (a) Force between parallel plates and (b) between a
sphere and a plane for patch potentials with variance �v �
90 mV and uniform power spectra. The Casimir force and the
force due to a uniform potential difference �v are also shown.
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The results of Sukenik et al. are consistent with a range
of wavelengths between 0.08 and 0:8 �m and �v �
76 mV. The patch force then amounts to 4% of the
Casimir force for a separation of 0:1 �m and would scale
with separation as 1=a3:5. If we assume that the wave-
lengths present in the spectrum scale with film thickness
but that �v is invariant, we find the patch force is 50% of
the Casimir force at 0:1 �m separation and varies ap-
proximately as 1=a3, for films of 140 nm thickness.

Forces due to large-scale variations in patch-
potential.—We can quantify the effect of surface con-
tamination by regarding the process as a dynamic
exchange of molecules between the surface and the
space above. At a particular point p on the surface, the
density of molecules can be considered to be propor-
tional to the open solid angle available to them, ��p�
[11]. The attenuating effect of the contaminants can be
modeled by covering the interacting surfaces with a di-
pole layer of density *�p� � A

"0
�1���p�=2��. We have

used the numerical method described above to study two
specific geometries employed in previous Casimir force
experiments. The first comprised a truncated spherical
shell in front of a planar disc of lateral extent comparable
to that of the shell [9]. The second consisted of a small
sphere in front of a grounded plane of essentially infinite
extent [11]. For a conservative choice of A of 10 mV,
the force due to adsorbates amounts to 0.5% of the
Casimir force at 1 mm for the first geometry, and 0.25%
at 0:1 �m for the second. The forces due to adsorbates
scale approximately as 1=a1:0 and 1=a0:9, respectively, for
each geometry and should therefore be easily distinguish-
able from Casimir forces. They may, however, signifi-
cantly modify the scaling at relatively large a, which is
usually assumed to correspond to spatially constant po-
tentials across the electrodes.
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Conclusions.—We cannot claim that the results pre-
sented here accurately reflect any real experiment as the
scaling of the patch force with gap depends crucially on
the range of spatial wavelengths present in the spectrum.
In the absence of such data, we have simply calculated the
plausible magnitude of patch forces that are consistent
with published results. However, our results suggest that
patch forces should be considered as sources of systematic
uncertainty in precise experimental determinations of the
Casimir force. We have shown that forces due to larger
scale potential variations due to contamination produce
forces that scale differently to Casimir force and should
therefore be less problematic.

Clearly it would be desirable to measure the relevant
patch-potential variations in situ. We note that techniques
based on Kelvin electrometers and probes appear to offer
sufficient resolution and sensitivity for this applica-
tion [21,22].

We are grateful to Quanmin Guo, Astrid Lambrecht,
Serge Renaud, and Peter Bender for useful discussions.We
thank BAE Systems and the Leverhulme Trust for finan-
cial support for this work.
[1] N. D. Lang and W. Kohn, Phys. Rev. B 3, 1215 (1971).
[2] M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys.

Rep. 353, 1 (2001).
[3] LISA Pre-Phase A Report, 1998, available at http://

lisa.jpl.nasa.gov
[4] P.W. Worden, C.W. F. Everitt, and M. Bye, STEP Science

Requirement Document, Stanford, 1990.
[5] C. D. Hoyle, et al., Phys. Rev. Lett. 86, 1418 (2001).
[6] H. B. Chan, Science 291, 1941 (2001).
[7] S. K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997).
[8] T. E. Ederth, Phys. Rev. A 62, 062104 (2000).
[9] Z. H. Liu, N. M. D. Brown, and A. McKinley, J. Phys.

Condens. Matter 9, 59 (1997).
[10] F. Rossi and G. I. Opat, J. Phys. D 25, 1349 (1992).
[11] U. Mohideen and A. Roy, Phys. Rev. Lett. 61, 4549

(1998).
[12] B.W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62,

052109 (2000).
[13] CRC Handbook of Chemistry and Physics, edited by

C. R. Lide (CRC Press, Boca Raton, FL, 2001), 82nd ed.
[14] C. I. Sukenik, et al., Phys. Rev. Lett. 70, 560 (1993).
[15] V. Sandogdhar, et al., Phys. Rev. Lett. 68, 3432 (1992).
[16] C. C. Speake, Classical Quantum Gravity 13, A291

(1996).
[17] G. Bressi et al., Phys. Rev. Lett. 88, 041804 (2002).
[18] B. Derjaguin, Kolloid Z. 69, 155 (1934).
[19] W. R. Smythe, Static and Dynamic Electricity (Taylor

and Francis, Bristol, United Kingdom, 1989), 3rd ed.
[20] A. Lambrecht and S. Reynaud, Eur. Phys. J. D 8, 309

(2000).
[21] H. N. McMurray and G. Williams, J. Appl. Phys. 91, 1673

(2002).
[22] J. B. Camp, T.W. Darling, and R. E. Brown, J. Appl. Phys.

69, 7126 (1991).
160403-4


