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Geometric Phase in Open Systems
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We calculate the geometric phase associated with the evolution of a system subjected to decoherence
through a quantum-jump approach. The method is general and can be applied to many different physical
systems. As examples, two main sources of decoherence are considered: dephasing and spontaneous
decay. We show that the geometric phase is completely insensitive to the former, i.e., it is independent of
the number of jumps determined by the dephasing operator.
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the problem of finding the proper parallel transport con-
dition, which is very well defined for unitary evolutions.
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l�1

Wi	l
j 0i; (3)
The phase acquired by a quantum system during its
evolution contains a contribution that depends only on the
geometry of the path traversed by the system in its
motion. This term, called the geometric phase, was first
discovered by Berry [1,2] in the context of adiabatic and
cyclic evolution, and then generalized in various direc-
tions, to include the most general evolution of pure quan-
tum states [2]. However, a pure state is an idealization and
any realistic experiment has to deal with statistical un-
certainties, which require a description in terms of mixed
quantum states. The definition of a geometric phase in a
mixed state scenario is still an open problem. There have
been various proposals tackling the problem from differ-
ent perspectives such as, for example, via state purifica-
tion [3], through an interferometric procedure [4], or for
dissipative systems [5]. In most of the cases these defi-
nitions do not agree on account of different constraints
imposed, namely, different generalizations of the parallel
transport condition.

In this Letter, we approach the problem of mixed states
geometric phases in open quantum systems through the
quantum jumps method [6,7] (for alternative methods, see
[8–12]). This method can be applied for any system
evolving under a Markovian master equation or, equiva-
lently, under any trace preserving completely positive
map [13]. Within this framework, we show that, in gen-
eral, it is possible to define and calculate a geometrical
phase for an open system, which can even be robust
against decoherence, as, for example, is the case for
purely diffusive reservoirs. As an illustration of our
method, we calculate Berry’s phases for a spin particle
in contact with different reservoirs.

The quantum jumps model proves to be particularly
suitable for the case of geometric phases because in each
particular trajectory the quantum state of the system
remains pure (if initially pure). The nonunitary evolution
of the system and mixed states are recovered when aver-
aging over all possible trajectories. Therefore, we avoid
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Let us take a system evolving according to the follow-
ing general master equation ( �h � 1):
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1

2
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f�y
k�k�� ��y

k�k � 2�k��
y
k g; (1)

where the commutator generates the coherent part of the
evolution. The second part represents the effect of the
reservoir on the dynamics of the system: the action of
each �k amounts to a different decohering process. For
a small time interval �t, we can describe the time evolu-
tion of the density matrix by

�	t� �t
 �
Xn
k�0

Wk�	t
W
y
k ; (2)

where W0 � 1 � i ~HH�t and Wk �
������
�t

p
�k (k 2 f1 . . . ng)

are called the ‘‘no-jump’’ and jump operators, respec-
tively. ~HH is a non-Hermitian Hamiltonian, given by ~HH �
H� i

2

P
n
k�1 �

y
k�k. Note that the operators Wk fulfill the

completeness relation
P
n
k�0W

y
k Wk � 1.

In this description, the dynamics of the system is
approximated by dividing the total evolution time T
into a sequence of discrete intervals �t � T

N . Accord-
ing to Eq. (2), the state of the system, after any time
step tm � m�t, evolves into �	tm�1
 � Wk�	tm
W

y
k (up to

first order in �t), with probability pk � TrWk�	tm
W
y
k .

For example, an initial (t � 0) pure state  0 would evolve,
after the first time interval, into the (not normalized)
state j 0i ! j 1i � Wkj 0i with probability pk	t1
 �
h 0jW

y
k Wkj 0i.

The time evolution of the system is, then, calculated for
a set of possible trajectories containing, each one of them,
different numbers of jumps, occurring at different times,
i.e., each trajectory is defined as a chain of states obtained
by the action of a sequence of operators Wk on the initial
state. For example, for an initial pure state j 0i, the (non-
normalized) state of the system, after the mth step, along
the ith trajectory, is given by

	i
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where i	l
 stands for the lth element of a sequence of
indexes with values belonging from 0 . . . n. Each trajec-
tory, then, is represented by a discrete sequence of pure
states f 0;  

	i

0 ; . . . ;  

	i

N g. The dynamics given by the mas-

ter equation is recovered by summing incoherently all the
states associated with each trajectory, and taking the
continuous limit �t! 0.

The fact that a pure state remains pure in each trajec-
tory, in the quantum jumps method, is very useful in our
case, since it is known that, given a chain of pure states
fj 1i . . . j Nig, the geometric phase associated with them
is given by the Pantcharatnam formula [14]:

�g � � argfh 1j 2ih 2j 3i . . . h N�1j Nih Nj 1ig: (4)

Therefore, we are able to associate a meaningful geomet-
rical phase to each trajectory ‘‘i’’described by the system,
as the continuous limit of Eq. (4) for the sequence
f 0;  

	i

0 ; . . . ;  

	i

N g.

As an example, let us consider the ‘‘no-jump’’ trajec-
tory for a completely general master equation. The evo-
lution of a quantum state along this trajectory is obtained
by the repeated action of the operator W0. At the time t �
m�t, the quantum state will be approximately given by

j 0
mi � 	W0


mj 0i �

�
1 � i

T
N

~HH
�
	N=T
t

j 0i; (5)

which in the continuous limit N ! 1 yields to a dynam-
ics governed by the complex effective Hamiltonian ~HH:

i
d
dt

j 0	t
i � ~HHj 0	t
i j 0	0
i � j 0i: (6)

Thus, the evolution corresponding to this trajectory is
given by a smooth chain of (non-normalized) states
j 	t
i, in which case �N converges to

� � �Im
Z T

0

h 	t
j ddt j 	t
i

h 	t
j 	t
i
dt� argfh 	T
j 	0
ig: (7)

Substituting Eq. (6) into Eq. (7), we obtain the geometric
phase for a no-jump trajectory, which is given by

�0 �
Z T

0

h 0	t
jHj 0	t
i

h 0	t
j 0	t
i
dt� argfh 0	T
j 0	0
ig: (8)

This is the geometric phase associated with a nonunitary
evolution of a system [14,15], when there are no jumps.
The first term is clearly the opposite of the dynamical
phase associated with the nonunitary evolution, as it is
given by the average of the Hamiltonian (up to a minus
sign) along the path traversed by the system. The second
term is the total phase difference between the final and
the initial state, according to Pancharatnam’s definition of
distant parallelism [16]. Thus the geometric phase is
obtained as the difference between total and dynamical
phase associated with a given evolution of pure states [14].

Note that, in the special case in which
P
n
i�1 �

y
i �i / 1

(which is a unital evolution), the geometric phase asso-
ciated with the no-jump trajectory is the same as the one
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acquired by an isolated system evolving under the same
Hamiltonian H. This becomes clear when one notes that,
in this case, W0 � 	1� �
1 � iH�t and the evolution of
state j�	t
i is the same as its isolated counterpart up to a
global normalization factor e��t. In other words, for this
particular source of decoherence, if the reservoir is per-
manently measured and no-jump is detected, there is no
gain of information on the system, which simply projects
it back into its unitary evolution.

Note, also, that following the idea of [17], it is possible
to represent the geometric phase (8) as the integral of the
Berry connection form:

d! � Im
h 	t
jdj 	t
i
h 	t
j 	t
i

(9)

along a closed path. This path is formed by the trajectory
 	t
 followed by the states along the Hilbert space during
the dynamical evolution and the shortest geodesic con-
necting final and initial states  	T
 and  	0
. Thus the
second term of Eq. (8) can be regarded as the path integral
of the Berry connection along this geodesic.

Suppose, now, that there is only one jump in the tra-
jectory at an arbitrary time t1, which occurs in a time
much shorter than any other characteristic time of the
system. Then, we can separate the evolution in two parts
(before and after the jump) and, the continuous limit of
Eq. (4) leads to the following expression:

�1
j �

Z t1

0

h 0	t
j ddt j 
0	t
i

h 0	t
j 0	t
i
dt� argfh 0	t1
j�jj 0	0
ig

�
Z T

t1

h 00	t
j ddt j 
00	t
i

h 00	t
j 00	t
i
dt� argfh 00	T
j 0	0
ig;

(10)

where Wj is the operator associated with the occurred
jump, and  0	t
 and  00	t
 are the states evolving under
the effective Hamiltonian ~HH , before and after the
jump, respectively. They are given by the Eq. (6) with
initial conditions  0	0
 �  0 and  00	t1
 � Wj 0	t1
,
respectively.

The first and third terms represent the dynamical
phases given by the effective evolution (6), before and
after the jump occurs. The last term is the phase differ-
ence between the initial and the final state of the total
evolution. The second term is a phase associated with the
occurrence of a jump at time t1. Analogous to the total
phase associated with the final and the initial state, this
term represents the phase difference between the states
after and before the jump, and geometrically, it can be
regarded as the path integral of the Berry connection
along the shortest geodesic joining them.

This result can be easily generalized to any trajec-
tory, allowing for a more complicated sequence of
jumps and no-jump evolutions. The geometric phase is
then represented as the sum of terms of the form
argh 	ti
j�jj 	ti
i regarded as the phase associated with
160402-2
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FIG. 1. Evolution of the state along a ‘‘one-jump’’ trajectory
on the Bloch sphere, in the case of phase diffusion decoherence
(� / �z). From time t0 to time t1 the state evolves under the no-
jump Hamiltonian ~HH alongside the parallel of the sphere. At
time t1 a jump occurs, flipping (instantaneously) the Bloch
vector about the z to the point t01, and the no-jump evolution
starts again. At time t2 � t0 � 2�=! the geometric phase � �
�	1� cos�
 is recovered. The geometric phase is half the area
enclosed in the path spanned by the Bloch vector. This is given
by two contribution, the surface t1 � t0 � t01 and the surface
t0 � t1 � t2. This picture also represents the evolution of a
spin-J particle subjected to dephasing, in a generalized Bloch
sphere.
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the jump �j occurring at the instant ti, and terms of the
form (7) for the no-jump evolutions. And clearly all these
phases can be regarded as the integrals of Berry connec-
tion along a complex path composed of geodesics joining
initial and final state of the jumps, and the paths traversed
by the state during the evolution under ~HH .

Let us apply this general quantum jumps procedure to a
well-known physical system. First, let us consider the
simplest example of decoherence: a two levels system
evolving under the free Hamiltonian H � !

2 �z and sub-
jected to dephasing, which can be described by the master
equation (1) with � � ��z, where � is the the coefficient
giving the probability per unit time of a ‘‘phase jump.’’

Since this is a decoherence model for which �y� �
�2
z / 1, which is a simple instance of a unital evolution,

according to the previous considerations, the geometric
phase associated with the no-jump case is given by the
standard geometric phase associated with the unitary
evolution of a spin 1=2 linearly coupled to a constant
magnetic field. For instance, after a time t � 2�=!, �0 �
�	1� h 0j�zj 0i
 � �	1� cos�
, where  0 is the initial
state and � is its azimuthal angle in the Bloch sphere
representation.

Although the no-jump case may seem trivial, this
system has a much more remarkable property: the geo-
metric phase is actually robust against dephasing, in this
simple, but very useful example. In fact, we show below
that the final geometric phase is unaffected by any num-
ber of jumps for any particular trajectory. To show that,
let us consider first the case of a single jump, in which the
phase is given by

�1 � �
Z t1

0

!
2
h 0j�zj 0idt� argfh 0j�zj 0ig

�
Z 2�=!

t1

!
2
h 0j�zj 0idt

� argfh 0je
i	�z=2
	2��!t1
�ze

i	�z=2
!t1 j 0ig

� �	1� h 0j�zj 0i
 � �	1� cos�
;

where the fact that H and � commute has been used. This
result is easily generalized to any number k of jumps:

�k � �
Z 2�=!

0

!
2
h 0j�zj 0idt� argfh 0j�zj 0i

kg

� argfh 0je
i�z�	�z


kj 0ig

� �	1� cos�
;

Thus, no matter how many jumps occur in the chosen
trajectory, we can associate the same geometric evolution
to the system. There is a simple geometrical explanation
for this effect. Dephasing is a special source for decoher-
ence because it does not change the projection of the spin
vector on the direction of the magnetic field, i.e., it does
not change the relative angle � between the directions of
the magnetic field and the spin. After each jump, the spin
160402-3
is still precessing around the magnetic field alongside the
same curve. As a result, the total area covered by its
trajectory remains the same, and so does the geometric
phase acquired by the spin state, which is proportional to
this area. Therefore, in the end, the geometric phase
acquired by the spin state will be the same, no matter
how diffused its total phase may be. That does not mean
that dephasing will not affect the measurement of this
phase. Indeed, the dephasing process increases the mix-
deness of the state, therefore the visibility in any inter-
ference measurement made on the spin is still limited by
V � 2	Tr�2 � 1=2
. However, as the calculations above
show, the decreased visibility will be caused by a ran-
domization of the dynamical phase, and not the geomet-
rical one, which proves to be much more robust in this
case.

This result can be easily generalized to the case of a
spin-J system, with arbitrary value of J. The geometric
phase of a particle of total angular momentum J evolving
under the Hamiltonian H � B � J is insensitive to de-
phasing (i.e., � / Jz where Jz is the component along
the direction of B) and this can be easily understood
from the geometrical representation of its evolution on a
generalized Bloch sphere (see Fig. 1).

Another interesting example is the one that includes
spontaneous decay as a source of decoherence for the
spin 1/2 system. In this case, it is only worth analyzing
the no-jump case, since any jump causes immediate and
complete loss of phase information of the quantum state.
Spontaneous decay � � ��� is a decoherence source that
cannot be associated with a unital map (���� � 1) and,
therefore, the phase will be affected even if no-jump is
160402-3
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FIG. 2. Evolution of the state along the no-jump trajectory
on the Bloch sphere, for the spontaneous decay case (�1 �
��z, �2 � ���). The evolution is a smooth spiral converg-
ing to the lower state: while the state rotates about the z axis, it
is smoothly brought towards the lower state with a velocity
given by the spontaneous decay rate �. The geometric phase is
given by the area enclosed in the path shown, where the last
segment is the geodesic connecting initial and final point of the
evolution.
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detected. However, as we show in Fig. 2, the no-jump
trajectory is a smooth spiral converging to the lower state,
which still allows us to calculate the phase using Eq. (7).
We obtained � � �� !

2� ln	h 0je
�2�	�=!
�z j 0i
, which

in the limit !� � leads to

� � �	1� cos�
 � 	2�
2
�
!
sin2�� o

�
�
!

�
2
:

Again, this result has a very simple geometrical explana-
tion: as we observe the reservoir and detect no-jump, the
probability that the system is in the lower state smoothly
increases, changing � and, therefore, the element of area
covered by the spin trajectory in each infinitesimal time
interval, as shown in Fig. 2.

Another simple case that can be analyzed is the spin
flip alongside an arbitrary direction � � �n̂n . In this case,
the no-jump situation is again trivial and similar to the
dephasing reservoir, since �2

n̂n � 1. When one or more
jumps occur, we can use Eq. (10) (or its generalization
to many jumps) to easily calculate the final phase, which
will be a sum of the partial areas covered in each trajec-
tory with plus or minus sign depending on the respective
coupling energy of the spin with the magnetic field. Our
treatment is, of course, applicable even when the master
equation contains many different sources of errors acting
simultaneously on the system, since we can use the gen-
eralized form of Eq. (10) to calculate the phase.

In conclusion, in this Letter, we present a method to
calculate geometric phases in open systems described by a
master equation in the form of Eq. (1). By using the
quantum jumps approach we avoid the problem of defin-
ing Berry’s phases for mixed states: in each trajectory, the
quantum state of the system remais pure and the phase
can be calculated through usual procedures. In particular,
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we show that it is always possible to calculate this phase,
either for the no-jump trajectories or for the ones in which
one or more jumps occur. We also show that, for special
unital decoherence sources, the phase remains unaffected
for the no-jumps trajectories. As a direct application of
our method, we calculate the geometric phases of spin
systems coupled to different reservoirs. We show that
those phases are totaly robust against phase diffusion,
in which case the lower visibility observed due to the
nonunitary evolution may be attributed solely to a ran-
domization of the dynamical phase. This property may
be interesting for possible applications, specially in
quantum computing, since dephasing may be difficult to
monitor and correct, in general. We also present a nice
geometrical explanation to this effect, as well as to the
effect on the geometric phase when spontaneous emission
is present, but no-jump is detected. We also briefly com-
ment on other typical decoherence effects on the system,
like arbitrary spin flips. The method presented here is
completely general and can be applied to many other
physical systems.
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