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While all bipartite pure entangled states violate some Bell inequality, the relationship between
entanglement and nonlocality for mixed quantum states is not well understood. We introduce a simple
and efficient algorithmic approach for the problem of constructing local hidden variable theories for
quantum states. The method is based on constructing a so-called symmetric quasiextension of the
quantum state that gives rise to a local hidden variable model with a certain number of settings for the
observers Alice and Bob.
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mathematics of local hidden variable (LHV) models and
Bell inequalities for bipartite systems. We refer the reader

operator-valued measure) elements for Alice’s ith mea-
surement and fEB g are the POVM elements for Bob’s kth
It was Bell [1] who quantified how measurements on
entangled quantum mechanical systems can invalidate
local classical models of reality. His original inequality
has generated a field of research devoted to general Bell
inequalities and experimentally observed violations of
such inequalities.

Perhaps surprisingly, the nature of the set of states that
violate local realism is poorly understood, although it is
known from the seminal work of Werner [2] that not all
entangled states violate a Bell inequality. Recent results
in quantum information theory have revealed the com-
plex structure of the set of entangled states but have as yet
shed little light on the relation between this structure and
violation of Bell inequalities. For example, it has been
conjectured by Peres [3] that so-called bound entangled
states which satisfy the Peres-Horodecki ‘‘partial trans-
position’’ criterion [4] (i.e., they have positive partial
transpose), do not violate any Bell inequalities. There
are various results that support this conjecture both in
the bipartite and multipartite case, see Ref. [5], but none
of the results is conclusive.

What has been lacking in the literature so far is a
systematic way of deciding whether a quantum state
does or does not violate some Bell inequality. The diffi-
culty is that the possible types of local measurements and
the number of measurements that observers can perform
is in principle unbounded and the enumeration of Bell
inequalities is computationally hard [6].

In this Letter we present the first systematic approach
for constructing local hidden variable theories for quan-
tum states, depending only on the number of local mea-
surement settings for each observer. Our approach has
yielded both numerically constructed local hidden vari-
able theories for a variety of quantum states as well as
analytical results for Werner states [2] and a class of
bound entangled states based on real UPBs [7].

Before we can state our main result, we recapitulate the
0031-9007=03=90(15)=157903(4)$20.00
to Refs. [3,6,8] for some literature on the theoretical
formulation of general Bell inequalities. Each of the ob-
servers, Alice and Bob, has a set of local measurements.
Let i � 1; . . . ; sa be the number of measurements for
Alice and let each measurement have oa�i� outcomes.
Let k � 1; . . . ; sb be the number of measurements for
Bob and ob�k� be the number of outcomes per measure-
ment. The probability Pij;kl denotes the probability that
Alice’s ith measurement has outcome j and Bob’s kth
measurement has outcome l. A local hidden variable
model assumes the existence of a shared random variable
between Alice and Bob that is used to locally generate a
measurement outcome depending only on the choice of
the local measurement (and not on the choice of the other,
remote, measurement). The local hidden variable model
generates the probability vector ~PP with entries Pij;kl when
it generates measurement outcomes in accordance with
these probabilities. Mathematically one defines a convex
set S�sa; sb; oa; ob� which is the set of probability vectors
~PP that can be generated by LHV models. It is known
that S is a polytope and that the extremal vectors ~BB of S
are vectors with 0; 1 entries [8]. These extremal vec-
tors ~BB correspond to the situation in which the outcomes
of the measurements are determined with certainty and
can be labeled by two sets of indices m � �m1; . . . ; msa�
where mi � 1; . . . ; oa�i� and n � �n1; . . . ; nsb� where
nk � 1; . . . ; ob�k�. A brief expression for these extremal
vectors is

Bm;n
ij;kl � �jmi

�lnk : (1)

In words, each extremal vector specifies a single outcome
with probability one for each local measurement, inde-
pendently of the measurement made by the other parties.

For a quantum mechanical system � in H dA �H dB
the probability Pij;kl is given by Pij;kl��� � TrEAij � E

B
kl�.

Here fEAij � 0:
P
j E

A
ij � IdAg are the POVM (positive

kl
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measurement. There is a violation of a Bell inequality
if and only if Pij;kl cannot be generated by a LHV model,
or ~PP =2 S.

In this Letter we prove the first necessary condition for
a state to violate a Bell inequality depending only on the
number of settings for Alice and Bob. We explicitly con-
struct a LHV model in a sa � 2 and arbitrary sb setting
(and vice versa) for any bound entangled state based on a
real unextendible product basis (UPB) [4]. Then we dis-
cuss numerical work that shows that many of the known
bipartite bound entangled states cannot violate a Bell in-
equality with two settings either for Alice or Bob. Finally,
we partially reproduce and extend some of Werner’s origi-
nal results by showing that it is possible to use our
procedure to analytically construct LHV theories for
Werner states. It is noteworthy to mention that our meth-
ods (Theorem 1 and Theorem 2) straightforwardly gen-
eralize to multipartite states, even though we have not
explored this direction.

We connect violations of Bell inequalities to the exis-
tence of a symmetric (quasi-) extension of a quantum
state [9]. An extension of a quantum state � on, say, a
system AB, is another quantum state defined on a system
ABC such that when we trace over C we obtain the
original quantum state �. We are interested in the situ-
ation where the system C � A��sa	1� � B��sb	1� and we
demand that the extension be invariant under all permu-
tations of the sa copies of system A among each other and
similarly invariant under any permutation of the B sys-
tems. It is clear that if the quantum state � is separable,
i.e., � �

P
i pi�j iih ij�A � �j�iih�ij�B, such an extension

always exists: we just copy the individual product states
onto the other spaces:

�ext �
X

i

pi�j iih ij��sa � �j�iih�ij�
�sb : (2)

If the state � is a pure entangled state, then it is also clear
that such a symmetric extension cannot exist. The sym-
metry requirement implies that the pure entangled state
�AB must equal �A0B, where A0 is another A system, which
is impossible. In popular terms we may say that pure
entanglement is ‘‘monogamous’’: B cannot be entangled
with A and A0 at the same time. In some sense what we
show in this Letter is that (i) a violation of a Bell inequal-
ity indicates that the entanglement in the quantum state is
monogamous and (ii) there are many mixed entangled
states whose entanglement is not monogamous.

Thus the existence of a symmetric extension can be
viewed as a separability criterion (see Ref. [11] for a
similar but stronger separability criterion where one de-
mands that the symmetric extension has positive partial
transposes). For considering Bell inequality violations
we generalize our criterion slightly and ask whether a
state has a symmetric quasiextension H� which is not
necessarily positive. In order to define this notion we need
the definition of a multipartite entanglement witness,
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which is an entanglement witness which can detect any
multipartite entanglement in a state. It has the property
that for all states  1; . . . ;  sa ; �1; . . . ; �sb , h 1; . . . ;  sa ;
�1; . . . ; �sb jH�j 1; . . . ;  sa ; �1; . . . ; �sbi � 0.

Definition (symmetric quasiextension): Let � :
H �s ! H �s be a permutation of spaces H in H �s.
We define

Sym��� �
1

s!

X

�

���y: (3)

We, say, that � on H A �H B has a �sa; sb�-symmetric
quasiextension when there exists a multipartite entangle-
ment witness H� on H �sa

A �H �sb
B such that

Tr
H ��sa	1�

A ;H
��sb	1�

B
H� � � and H� � SymA � SymB�H��:

The reason for considering such quasiextensions is
clear from the following theorems which are the main
results of this Letter.

Theorem 1: If � has a �sa; sb�-symmetric quasiexten-
sion, then � does not violate a Bell inequality with �sa; sb�
settings.

Before proving this theorem, it is important to note the
generality of the result; it holds for all possible choices of
measurements which includes POVM measurements with
an unbounded number of measurement outcomes. We
show below that the quasiextension of � effectively cre-
ates a LHV model for � when Alice and Bob have sa and
sb arbitrary measurements.

Proof: We prove our theorem by extracting a LHV
model from the quasiextension. The LHV model for �
for �sa; sb� settings should reproduce the vector Pij;kl��� �
TrEAij�E

B
kl� for all possible choices of POVM measure-

ments fEAij;E
B
klg, as a convex combination of the extremal

B vectors, i.e.,

Pij;kl��� �
X

m;n

pm;n�fEAij;E
B
klg;��B

m;n
ij;kl; (4)

where pm;n�:� � 0. If a symmetric quasiextension exists
for �, then TrEAij�E

B
kl�� Tr�EAij�E

B
kl � I�H�. Using the

definition of the B vectors, the properties of the POVMs
(
P
j E

A;B
ij � IdA;B), and the symmetry properties of H� it is

not hard to verify that

Pij;kl��� � TrEAij�E
B
kl��

X

m;n

�TrEA
m �EB

nH��B
m;n
ij;kl: (5)

Here EA
m�EA1m1

�EA2m2
� . . .�EAsamsa

and similarly for EB
n .

Since H� is a quasiextension pm;n�fEAij;E
B
klg;���TrEA

m�
EB

nH��0, and we have obtained a LHV model. �
One way of looking at this result is the following [12].

If � has a symmetric extension ~��, then instead of mea-
surement on �, Alice and Bob can do measurements on ~��.
Because of the symmetry Alice can do the first measure-
ment on the first Alice space and the second measurement
on the second Alice space, etc. But now these measure-
ments are all commuting and can be considered as one big
157903-2
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measurement. But we know that when Alice and Bob each
have only a single measurement a LHV model for their
measurements exists and thus we have a LHV model for
the measurements on �. With this picture in mind, it is not
hard to understand the following strengthening of our
results (see also Ref. [10]):

Theorem 2: If � has a �1; sb�-symmetric quasiexten-
sion, then � does not violate a Bell inequality with sb
settings for Bob and any number of settings for Alice.

Remark: The theorem also holds when Alice and Bob
are interchanged.

Proof: The intuition behind this theorem relies on the
fact that there are no violations of Bell inequalities when
one party has only one measurement setting, thus suggest-
ing that it is unnecessary to extend to copies of Alice’s
space as well as Bob’s. Here is the local hidden variable
model that we construct from a quasiextension H�, on
H A �H �sb

B . We set

pm;n�fEAij; E
B
klg; �� �


sa
i0�1�TrE

A
i0mi0

�EB
nH��

�TrIA � EBnH��
sa	1 : (6)

Each pm;n is non-negative since H� is an entanglement
witness. We can substitute this expression in Eq. (4) and
verify that we obtain the correct probabilities Pij;kl��� by
using the definition of the B vectors, the normalization of
the POVMs, and the symmetry of H� as before. �

This method for constructing LHV theories may
be implemented both numerically and analytically.
Let us first show a simple analytic construction of a
�2; 2�-symmetric extension for any bound entangled state
based on a real unextendible product basis [7]. Let PBE �
I 	

P
i jai; biihai; bij be the projector onto such a bound

entangled state, where fjai; bii � ja�i ; b
�
i ig is the real un-

extendable product basis. Our (unnormalized) extension
will be j�iA2A1

� j�iB1B2
	

P
i jai; ai; bi; biiA2A1B1B2

,
where j�i �

P
i jiii. It is evident that this extension has

the desired symmetry property. It is not hard to verify
that by tracing over the systems A2 and B2 we obtain
P2
BE � PBE. The existence of a symmetric �2; 2� extension

implies the existence of both �2; 1� and �1; 2� symmetric
extensions for the state by tracing out copies of A or B, so
any Bell inequality violation for this class of states must
involve more than two measurement settings for both
parties.

We have implemented numerical tests for the condi-
tions of these two theorems. First, we look for the exis-
tence of a symmetric extension with H� � 0. If such an
extension does not exist, there is still the possibility that
some other kind of quasiextension does exist. We have
focused on the existence of a decomposable entanglement
witness H� because in both these cases the numerical
problem corresponds to a semidefinite program [13]. We
label the partitions of H �sa

A �H �sb
B into bipartite sys-

tems by p and we denote partial transposition with re-
spect to one of the two subsystems as Tp. A decomposable
157903-3
entanglement witness may then be written as H� � P�P
p Q

Tp
p , where P � 0, Qp � 0 for all p.

Semidefinite programs correspond to optimizations of
linear functions on positive matrices subject to trace con-
straints. They are convex optimizations and are particu-
larly tractable both analytically and numerically. We
show how to numerically construct symmetric exten-
sions, the decomposable quasiextension case is very simi-
lar. The condition that the partial trace of H� is � is
equivalent to requiring that Tr�X � I�H� � TrX� for all
operators X on H A �H B. If we write X in terms of a
basis f!ig for the real vector space of Hermitian operators,
then by linearity it is enough to check that this trace
constraint holds for each element of the basis. We assume
that the basis is orthogonal in the trace inner product
Tr!i!j � �ij and that !0 � IdA � IdB=

�����������
dAdB

p
. The index

i ranges from zero to �dAdB�2 	 1. Consider then this
semidefinite program

minimize TrK;

subject to TrSymA�SymB�!i�I�K � ri; i > 0;

K � 0;

where ri�Tr!i�. If the optimum is less than or equal to
one, then, by adding a multiple of the identity to the
optimal K, we obtain some K� that satisfies TrK��1 as
well as the other constraints. If we define H��SymA�
SymB�K�� it is clear that H� is a �sa;sb�-symmetric ex-
tension of �. Duality properties of semidefinite programs
imply that an optimum greater than one precludes the
existence of a �sa;sb�-symmetric extension [13].

We have implemented this semidefinite program using
SeDuMi [14] for several examples of bound entangled
states with dA � dB � 3. The results are summarized in
Table I. For example, the Choi-Horodecki (C-H) states
considered in Ref. [15] depend on a parameter % and
include separable (% 2 �2; 3�), bound entangled (% 2
�3; 4�), and nonpositive partial transpose (NPT) states
for % > 4. They turn out to have �2; 1�-symmetric exten-
sions well into the range for which the states are en-
tangled and even NPT. Over the range % 2 �4:34; 4:84�
they have decomposable symmetric quasiextensions but
no symmetric extensions showing that the former prop-
erty provides a strictly stronger sufficient condition for
the existence of a LHV theory. The bound entangled states
of [16] do not even have �1; 2� extensions. These and many
of the Bruß-Peres states [17] are therefore the strongest
candidates for bound entangled states with Bell inequal-
ity violations. However, we have looked for but did not
find Bell inequality violations for �sa � 2; sb � 2� set-
tings and three outcome projective measurements and for
�3; 3� settings and two outcome projective measurements.

Finally we considered Werner states [2] defined in
dimensions d � dA � dB � 2 as �W � 1

d3	d
�I�d	�� �

�d�	 1�V�, where V is the flip operator. Werner [2]
157903-3



TABLE I. Numerical results on the existence of symmetric
extensions (ext) and decomposable quasiextensions (q-ext) for
�sa � 1; sb � 2�, �sa � 2; sb � 1�, �sa� 1; sb� 3�, and �sa� 3;
sb� 1�. For the one and two dimensional families of states
[2,15,16] we performed a systematic search of the parameter
space. For the high dimensional families [17,18] we make
qualitative statements based on randomly chosen examples.
Note that states may have an �s;1� extension and no �1; s�
extension. We have performed both tests in all cases, but the
general results are unaffected although we do find examples of
Bruß-Peres states with �2;1� extensions, say, but no �1;2�
extensions.

�2; 1�; �1; 2� �3; 1�; �1; 3�
ext q-ext ext

C-H [15]:% 2 �2; 4:33� �2; 4:84� �2; 4:00�
Complex UPB [18] Yes Yes Few

H-L [16] No No No
Bruß-Peres [17] Few Few No

Werner [2] d � 3 d � 3 d � 4
Werner d � 2;� � 	1=2 	1=2 	1=3

P H Y S I C A L R E V I E W L E T T E R S week ending
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showed that for � � 	1� d�1
d2 these states do not violate

any Bell inequality with an arbitrary number sa; sb of
von Neumann measurements (in Ref. [19] the author
constructs LHV models for arbitrary POVM settings for
a more restricted range of �). We found that using sym-
metry techniques similar to those in Ref. [20] it is pos-
sible to analytically solve the dual optimization problem
to the semidefinite program described above; see [21]. The
value of the optimum establishes that all Werner states
have symmetric extensions so long as sa � sb � d. Hence
these states have LHV theories for all Bell experiments
where the minimum number of settings s � min�sa; sb�
satisfies s� 1 � d. This result is more general than
Werner’s in the sense that, as in Ref. [19], it holds for
general POVM elements. It is weaker in the sense that the
number of settings is bounded by the dimension of the
space. Numerical and analytical results (see Table I and
[21]) show that Werner states for d � 2 actually have
symmetric (quasi-) extensions beyond this analytically
derived bound.

Even though our method is the most powerful tool to
date for constructing local hidden variable theories, we
believe that it is unlikely that every LHV model can be
constructed from a symmetric quasiextension. It has been
proven that only separable states have �sa � 1; sb ! 1�
extensions; see Refs. [10,22]. This result can be extended
to quasiextensions [23] even though LHV theories for
entangled states with an arbitrary number of settings do
exist [2,19]. Our work is only the starting point for a
more thorough exploration of the existence of LHV mod-
els and (quasi-) extensions for entangled quantum states.
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