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Experimental Evidence for Anisotropic Double-Gap Behavior in MgB2
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The behavior of a type II superconductor in the presence of a magnetic field is governed by two
characteristic length scales, the London penetration depth and the coherence length. We present
magnetization measurements on MgB2 powder showing an anisotropy in the upper critical field and
hence the coherence length of 6. Using the technique of small angle neutron scattering we show that this
anisotropy is not mirrored in the London penetration depth, which is almost isotropic. This result can be
explained by the superconductivity residing in two distinct electronic bands of the material, only one of
which is highly anisotropic.
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nally clustered about 2 [7–11] with more recent values in
the range 4–6 [12–16]. Ginsburg-Landau (GL) theory,

source show a low temperature anisotropy of �� � 6
[14,17]. Using the same method we have measured ��
Introduction.—MgB2 is a relatively new discovery in
the family of superconducting materials [1]. It has the
highest critical temperature, Tc of 39 K for a simple
binary compound. Intense technical interest stems from
the fact that high critical currents can be obtained even
with sintered powders and its ability to be formed into
wires. In addition to the technological interest there are
important questions concerning the superconducting
mechanism that are still to be addressed. Measurements
of the isotope effect [2] have shown that the attractive
interaction forming superconducting electron pairs is
photon mediated, as described by BCS theory. This
theory has shown that crystal vibrations or phonons are
responsible for an attractive interaction between electrons
allowing them to pair up and condense into the super-
conducting state. Because of this interaction, a gap in the
energetic states of the electrons opens up. An extension to
this theory [3–6] involving multiple gaps has been ap-
plied in order to explain the relatively high Tc for a
phonon-mediated superconductor. One consequence of
the double-gap model (one of which is highly anisotropic)
is that the anisotropy of two fundamental length scales
can no longer be described by a single anisotropy param-
eter [5,6]. When a sample is cooled in an applied field H
where Hc1 < H< Hc2 quantized lines of flux thread the
material sustained by a vortex of supercurrent. At the
center of a vortex is a core of normal electrons, the
characteristic size of which is the coherence length, �.
The circulating current dies away from the core over the
London magnetic penetration depth, �. The upper critical
field, Hc2 above which the superconductivity is destroyed,
is a function of � and the lower critical field, Hc1 is largely
determined by �. Many measurements have shown a
significant difference between Hc2 measured with an
applied field parallel to the ab plane to that crossing it,
i.e., �� � �ab=�c. Low temperature values of �� origi-
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applicable close to the critical temperature, predicts that
any anisotropy in � must be reflected in �, i.e., �� � ��
where �� � �c=�ab. The inequality of �� and ��, below
Tc, is exactly what has been predicted from models which
take into account the electronic band structure in this
material leading to the presence of two distinct energy
gaps [3–6] one of which is highly anisotropic. These
calculations show 
-bonding orbitals having an essen-
tially isotropic 3D nature and a small gap and anisotropic
�-orbital sheets with a gap approximately 4 times larger.
It has been predicted [6] that at low temperatures �� � 6
and �� � 1:2 with �� falling with increasing temperature
and �� rising to equal �� at a value of �2:5 at Tc. The
values of �� experimentally evaluated from a number of
measurements [12–17] are in agreement with the theoret-
ical value of ��. We have followed the relatively simple
method [14,17] of extracting �� from a powder by mea-
suring the magnetization as a function of applied field.We
also measure �� on the same sample using the technique
of small angle neutron scattering (SANS). A lattice of
flux lines produces a modulating magnetic field, the am-
plitude of which is directly related to �. The neutron, with
its magnetic moment, is sensitive to this modulation and
can coherently scatter from planes of flux lines resulting
in Bragg peaks of detected neutron intensity. This is a
direct measurement of the distance between flux-line
planes, d. Here we deduce the anisotropy of � by meas-
uring the distribution of d. For the first time measurement
of both �� and �� have been made on the same sample
and we find a remarkable agreement with the model based
on the double-gap feature [6].

Experimental.—The sample used in this experiment
was an unaligned powder enriched with 11B to reduce
neutron absorption. It was prepared from elemental Mg
and isotopically enriched 11B as described in Ref. [2].
Magnetization measurements of samples from the same
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to be 6:7� 0:2 at 2 K with the highest upper critical field
(with an applied field in the ab plane) of 16:1� 2 T. A
thin layer of sample was sprinkled over an aluminium
plate thinly coated in adhesive and the excess shaken off.
The sample was then mounted in a cryostat, which was
placed between hollow poles of an electromagnet allow-
ing the neutron beam to pass through the sample to the
detector with the applied field parallel to the beam. For
neutrons of wavelength 10 
A a neutron beam is deflected
by only �1� from a flux line density of 0:5 T. For this
reason the small angle neutron scattering machine D22
at the Institut Laue Langevin was employed for these
experiments. D22 allowed a 17.6 m collimation length
resulting in a beam with a FWHM divergence of
0:174� � 2�. A 1 m2 multidetector with resolution
7.5 mm was placed 17.6 mm away from the sample. The
incident neutron wavelength was 10 
A with a FWHM
fractional lambda spread of 10%.With a powdered sample
each grain contains a flux lattice of its own. The result is a
ring of scattering, which was obtained by measuring the
sample at 2 K, cooled in 0.5 T, and subtracting a back-
ground measured from the sample at 40 K as shown in
Fig. 1. When measuring the scattering a beam stop was
placed at the center of the detector to avoid the unde-
flected beam overloading the detector. The measurement
of the incoming beam was realized by placing a cali-
brated attenuator in the beam and removing the beam-
stop. In principle we can measure the effective �, which
FIG. 1. The ring of scattering on the multidetector with the
background subtracted. The contours are linear. The sample
was field cooled in 0.5 T down to 2.0 K. The applied field and
sample have been rotated 0:5� about a vertical axis, thus
satisfying the Bragg condition on the left side of the ring.
The data in Fig. 3 have been extracted from this picture by
integrating the intensity as a function of deflected angle 2� and
normalizing by the area of each successive integration ring.
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when coupled with �� allows us to find both �ab and �c.
However, in this work we concentrate on finding �� and
comparing it with ��. Our method for extracting �� does
not depend on the absolute values of �ab and �c, which
only change the intensity of the scattering and not the
spatial distribution.

Results.—Figure 1 shows the ring of intensity associ-
ated with the diffraction from the flux lattices in the
powder after subtracting the background of 2 K and field
cooled in 0.5 T. From the mean deflected angle of the
scattering we can extract the mean separation of flux line
planes from Braggs law

�n � 2d sin���; (1)

where �n is the neutron wavelength, � is half the deflected
angle of the neutron mean, and d is the plane spacing of
the flux lines. The mean plane spacing was found to be
620� 15 
A, which can be used to calculate the average
flux density in the bulk assuming a square lattice (0.53 T)
or a triangular lattice (0.46 T). Clearly the flux line
density in the bulk cannot exceed the applied field of
0.5 T so we conclude that the flux lattice is triangular as
expected with hexagonal crystal symmetry. In a ran-
domly oriented powder where  is the angle between
the c axis of a grain and the applied field we sample
grains with a statistical weighting of sin . Anisotropy
of � results in currents flowing in an elliptical form about
a flux line axis when the current is forced to cross the ab
plane, i.e.,  > 0. The spacing between flux line planes
adjusts itself to equalize the repulsion from its neighbors
and the result is an elliptical locus of scattering from a
single grain of eccentricity 1=�cos2 � sin2 =�2

��
1=2 [18].

Clearly when  � 0 �B==c� the lattice is undistorted,
independently of the value of ��. A distorted flux lattice
in a randomly oriented crystal and the resultant scattering
pattern is shown in Fig. 2. The angle � defines the
orientation of the flux lattice relative to the minor axis
of the ellipse as defined in Ref. [18]. This was demon-
strated [19] with a single crystal of YBa2Cu3O7 where the
anisotropy of � was mirrored in the elliptical arrange-
ment of Bragg peaks.

Clearly from Eq. (1) the presence of anisotropy, am-
plified by the geometrical sin factor, will result in a
distribution of d spacings and hence broaden the width of
the ring as seen in Fig. 1. Figure 3 shows the measured
intensity as a function of scattered angle of the beam.
This is clearly broader than the case where �� � 1 which
represents the instrument resolution. We model the effects
of this broadening by summing the flux lattice contribu-
tions to the scattering from each grain in the sample [18].
Assuming the flux lattice orientation about the field
direction is pinned to a particular crystal axis in a grain
we must sum over all possible flux lattice structures
within a given ellipse defined by  and �� over the ranges
� � 0-
=3 and  � 0-
=2 weighting by sin . This
range of � entirely fills each ellipse with intensity. The
result must be summed over all azimuthal angles, � on
157002-2



α
β

c-axis

β

FIG. 2. The left shows the scattering on the detector expected
from a single grain when �� > 1 and  > 0 where  is the
angle between the c axis of the crystal and the applied field
normal to the page. The right shows a crystal at an arbitrary
orientation showing the vortices of supercurrent around each
flux line. The angle � is the projected angle of the c axis (and
major axis of the ellipse) to the horizontal. The model involves
summing over the scattering patterns for  � 0 to 
=2,
weighting by sin , summing over all � from 0 to 
=3 (or
setting � � 0) and then integrating the result over all azimu-
thal angles �. With the eccentricity of each ellipse equal to
1=�cos2 � sin2 =�2

��
1=2, the result is an increasing broadening

of the intensity as a function of 2� with increasing ��. The
gray lines show the major and minor axes of the ellipse.
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the ‘‘detector’’ as each ellipse can have any orientation.
Each lattice constructed consisted of six Bragg peaks of
FWHM 0:197�. This width represents the instrumental
resolution coming from the wavelength spread and the
divergence of the incoming beam [20]. Campbell [18] has
shown that the orientation � � 0 is energetically favor-
FIG. 3. The variation of scattering as a function of deflected
angle of the beam integrated 360� about the undeflected beam
axis. The dashed line and the solid squares are the models with
� � 0�–60� for �� � 6:70 and 1.32, respectively. The dot-
dashed line and the solid circles are the models with � � 0�

for �� � 6:70 and 1.28, respectively. The solid line is the model
for �� � 1 (the width is the instrument resolution) and the
open circles are the data. Clearly the value �� � 6:7, taken
from magnetization measurements does not correspond to the
data with either of the possible orientations.
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able so we model this case in addition to the random
orientation corresponding to a preferential crystal direc-
tion in the ab plane for a flux line plane. We use a �2

criterion to find the value of �� which gives the best fit to
the data. For the first case with � � 0-
=3 we obtain
�� � 1:32� 1 with �2 � 1:12 and for the second with
� � 0 we have �� � 1:28� 1 with �2 � 1:28. The val-
ues of �2 are so close we cannot distinguish between these
two cases but both give similar values for �� only because
�� is close to 1. Figure 3 also shows the intensity distri-
bution for �� set to �� � 6:7 for the two orientation
cases, both of which are inconsistent with the data.
Figure 4 shows the data derived here along with the
theoretical predictions for ���T� and ���T�.

The values for �� were derived assuming that the only
sources of the scattered intensity width came from the
instrument resolution and the anisotropy in �. The pres-
ence of other sources of d-spacing variation leads to an
overestimation of �� so we can take the value of 1.32 as
an upper bound. We did, however, take care to avoid
multiple scattering effects by reducing the mass of sam-
ple in the beam such that we were in a regime where the
width of the scattered intensity was independent of sam-
ple quantity. The finite size of the flux lattices confined in
each grain does not lead to broadening as we estimate the
transverse coherence of the neutron beam (0:3 �m) to be
smaller than the lower bound of grain sizes seen by
electron microscopy. Other possible small sources of
broadening involve considerations of the perfection of
the flux lattice formed in each grain. We do not consider
these cases as the principle result of this study is the
demonstration of the inequality of �� and ��.
FIG. 4. The open squares show �� from Ref. [14] measured
with a sample from the same source. The solid squares are ��
measured on this sample using the same magnetization method.
The dotted and solid lines show the theoretical predictions for
�� and �� in clean MgB2 with a gap ratio of 4 [5,6]. The solid
diamond is the upper limit for �� derived from the neutron
measurements described here.
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Conclusions.—We have made accurate measurements of
an upper limit of �� and found that compared to the
anisotropy in � (derived from magnetization measure-
ments) it is almost isotropic as predicted by a double-gap
model [5,6]. The two-gap model predicts an almost iso-
tropic variation of � as this depends only on the total
density of superconducting carriers and the effective car-
rier mass anisotropy, not on the anisotropy of the gap for
clean superconductors [5,6]. The gap anisotropy, princi-
pally coming from the � bands with the larger gap only
has a strong effect on �. It should be noted that a double
gap without associated anisotropy in one or both of the
gaps would not show the different anisotropies we have
observed. Impurity scattering tends to blur out the dou-
ble-gap structure so only cleaner samples are likely to
show high values of ��, which could explain the wide
variation in measured values. We see a remarkable agree-
ment between both anisotropy values and the theoretical
predictions. The consequence of this result for applica-
tions are double edged. For sintered polycrystalline sam-
ples we would like to be able to pass the highest current
density possible. The high value of �� means we suffer a
relatively low value of Hc2 when the applied field is
parallel to the c axis ( � 2:5 T) so an increasing fraction
of the grains are turned normal at applied fields greater
than this. However, the propensity of the flux lattice to
melt [21], become mobile, and induce electrical resist-
ance when passing a current is reduced with an almost
isotropic �.
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