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Measuring the Transmission Phase of a Quantum Dot in a Closed Interferometer
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The electron transmission through a closed Aharonov-Bohm mesoscopic solid-state interferometer,
with a quantum dot (QD) on one of the paths, is calculated exactly for a simple model. Although the
conductance is an even function of the magnetic flux (due to Onsager’s relations), in many cases one can
use the measured conductance to extract both the amplitude and the phase of the ‘‘intrinsic’’ trans-
mission amplitude tD � �ijtDje

i�D through the ‘‘bare’’ QD. We also propose to compare this indirect
measurement with the (hitherto untested) direct relation sin2��D� � jtDj

2=max�jtDj
2�.
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Aiming to measure a nontrivial AB phase shift  then
led to experiments with ‘‘open’’ interferometers [7,12], FIG. 1. Model for the closed ABI.
Recent advances in nanoscience raised interest in
quantum dots (QDs), which represent artificial atoms
with experimentally controllable properties [1,2].
Connecting the QD via metallic leads to electron reser-
voirs yields resonant transmission through the QD, with
peaks whenever the Fermi energy in the leads crosses a
resonance on the QD. The energies of the latter are varied
by controlling the plunger gate voltage on the QD, V. The
quantum information on the tunneling of an electron is
contained in the complex transmission amplitude, tD �
�i

��������
T D

p
ei�D . The phase �D is particularly interesting,

given its relation to the additional electron occupation
in the system via the Friedel sum rule [3,4]. This phase
is also predicted to exhibit interesting behavior, e.g., near
a Kondo-like resonance [5]. This motivated experimental
attempts to measure �D [6,7], using the Aharonov-Bohm
interferometer (ABI) [8].

In the ABI, the QD is placed on one branch, in parallel
to a ‘‘reference’’ branch (both connecting the two exter-
nal leads). A magnetic flux � in the area between the two
branches creates a phase difference � � e�= 	hc between
the wave functions in the two branches [9]. In the two-slit
limit, the total ABI transmission is

T � jtj2 � jtDei� � tBj2 � A� B cos��� �; (1)

with  � �D � �, where � contains V-independent con-
tributions from the reference transmission, tB �
�ijtBjei�B , and from the electron ‘‘optical’’ paths on the
two branches. However, for the ‘‘closed’’ two-terminal
geometry, unitarity (conservation of current) and time
reversal symmetry imply the Onsager relations [10],
which state that the two-terminal conductance, G �
�e2=h�T , is an even function of �. Therefore, a naive fit
of the experimental transmission to Eq. (1) must yield
 � 0 or �—with no relation to �D. Indeed, the experi-
mental data [6] for T depend only on cos� [11].
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which contain additional ‘‘leaky’’ channels, breaking the
Onsager symmetry. A fit to Eq. (1) then yields a phase 
which increases (with V) gradually from 0 to � through
each resonance. However, the detailed V dependence of 
depends on the strength of the coupling to the additional
terminals [13]. Although it is possible to optimize this
strength, and reproduce the two-slit conditions [14], this
involves large uncertainties.

In this Letter, we present exact results for the total
transmission of the closed ABI, T . Although T is even
in �, contradicting the simple two-slit Eq. (1), it does
depend on both T D and �D. Under appropriate conditions
(see below), one can thus extract �D from the measured
T , eliminating the need to open the interferometer. This
possible extraction was not noticed in earlier discussions
of the closed ABI. Theoretical analyses used the Keldysh
technique, combined with the wideband and related ap-
proximations [15,16], or ignored electron-electron inter-
actions [17]. These approximations, which sometimes
miss important features of the results (see below), are
avoided in our calculation, which is done in the linear
response limit, and at temperature T � 0.

We demonstrate our results for a simple lattice model,
shown in Fig. 1: For � � 0, each (unit length) segment in
the figure represents a real tight-binding hopping matrix
element �J, �IL, �IR, �JL, and �JR, as indicated. All
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the on-site energies are zero, except �D on the site ‘‘dot’’
and �0 on the site ‘‘ref ’’ (which sits on the reference path
and represents a simple point contact, a tunnel junction,
etc.). The latter two energies can be varied experimen-
tally by the plunger (or point contact) gate voltages �D �
V and �0 � V0 [11]. As usual for such models, electron-
electron interactions are included only via an on-site
Hubbard interaction U on the QD. The AB phase in the
triangle, � � �L ��R, is included by attaching a fac-
tor ei�L (ei�R) to the hopping matrix element JL (JR). At
T � 0, the electron energy �k � �2J cosk is equal to the
Fermi energy on the leads, �F, and we calculate the trans-
mission for electrons with spin �.

We start by reviewing the intrinsic transmission
through the QD, without the reference path (e.g., for large
jV0j � j�0j, or with IL � IR � 0). Adapting the results of
Ref. [18], one has

tD � �i�D sin�De
i�D � 2i sinjkjJLJRgD��k�=J; (2)

with the QD asymmetry factor �D � 2JLJR=�J2L � J2R�
and the intrinsic Green function on the QD, gD��k� �
1=��k � �D � �D��k�	. Here, �D��k� is the self-energy on
the QD, which contains contributions from the leads,
�D;ext � �eijkj�J2L � J2R�=J (which exists also for the non-
interacting case [13]), and from the electron-electron
interactions on the QD itself, �D;int�!� (which vanishes
when U � 0). As �D � V increases, �D grows gradually
from zero (far below the resonance), through �=2 (at the
resonance), towards � (far above the resonance).

Interestingly, for this one-dimensional model, normal-
izing the measured T D � jtDj2 � �2

D sin2��D� by its
(V-independent) maximum �2

D yields the value of �D.
Assuming coherence, this (hitherto ignored) method for
measuring �D directly from T D eliminates the need for
any complicated interferometry [19]. In the remainder of
this Letter, we discuss ways of extracting �D indirectly,
from the closed ABI measurements. Comparing results
from sin2��D� � T D=�2

D, from the closed ABI (below),
and from the open ABI [14] (all with the same QD) should
serve as consistency checks for this conclusion.

The same analysis yields the transmission amplitude
through the reference path (when, e.g., JL � JR � 0),

tB � �i�B sin�Bei�B � 2i sinjkjILIRgB��k�=J; (3)

with the bare reference site Green function gB � 1=
��k � �0 � eijkj�I2L � I2R�=J	, and �B � 2ILIR=�I

2
L � I2R�.

In the two-slit situation, Eqs. (2) and (3) suffice to deter-
mine the overall transmission, as in Eq. (1). However, the
situation is more complicated for the closed ABI. The
main result of this Letter concerns the exact transmission
amplitude through the closed ABI,

t � ADtDe
i� � ABtB; (4)

where we findAD � gB��k � �0�GD��k�=gD��k� and AB �
1�GD��k��ext��k�. Here, GD�!� � 1=�!� �D � ��!�	
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is the fully ‘‘dressed’’ Green function on the QD, with the
dressed self-energy � � �int ��ext. Both terms here
differ from their counterparts in the intrinsic �D, by
contributions due to the reference path. Equation (4) looks
like the two-slit formula, t � tDei� � tB. However, each
of the terms is now renormalized: AD contains all the
additional processes in which the electron ‘‘visits’’ the
reference site (AD � 1 when IL � IR � 0), and AB con-
tains the corrections to tB due to visits on the dot. In fact,
a physical derivation of Eq. (4) amounts to starting from
Eq. (2), and adding an infinite power series in IL and IR.
We now discuss the � dependence of T � jtj2, in con-
nection with the Onsager relations and with the possible
indirect extraction of �D.

We first note that both parts in ���k� are even in �,
due to additive contributions (with equal amplitudes)
from clockwise and counterclockwise motions of the
electron around the ring (see, e.g., Refs. [8,13,17,20]).
In order that T also depends only on cos�, as required
by the Onsager relations, the ratio K � ABtB=�ADtD� �
~xx�GD��k��1 � �ext��k�	, with the real coefficient ~xx �
ILIR=�JLJR��k � �0�	, must be real, i.e.,

Im�GD��k�
�1 � �ext��k�	 � Im�int � 0: (5)

The same relation follows from the unitarity of the 2
 2
scattering matrix of the ring. This relation already ap-
peared for the special case of single impurity scattering,
in connection with the Friedel sum rule [4], and was
implicitly contained in Eq. (2), where Im�D;int � 0
[18]. Equation (5) implies that (at T � 0 and ! � �k)
the interaction self-energy �int��k� is real, and therefore
the width of the resonance, ImGD��k��1, is fully deter-
mined by the noninteracting self-energy Im�ext��k�.

Since �ext�!� depends only on the (noninteracting)
tight-binding terms, it is easy to calculate it explicitly.
We find �ext��k� � �D;ext��k� � �ext, where

�ext � e2ijkjgB�J2LI
2
L � J2RI

2
R � 2JLJRILIR cos��=J2: (6)

The term proportional to cos� comes from the electron
clockwise and counterclockwise motion around the ABI
‘‘ring.’’ Similarly, one can write �int��k� � �D;int��k� �
�int, and thus GD��k��1 � gD��k��1 � �, with � �
�ext � �int. Hence, t � ADtD�ei� � K�. Writing also
AD � C=�1� gD��k��	, with C � ��k � �0�gB, we find

T � jCj2T D
1� K2 � 2K cos�

1� 2Re�gD�	 � jgD�j
2 : (7)

Equation (7) presents an alternative form of our main
result. Although the numerator looks like the two-slit
Eq. (1), with  � 0 or � (depending on signK), the new
physics is contained in the denominator — which be-
comes important in the vicinity of a resonance. The
central term in this denominator depends explicitly on
the phase of the complex number gD. Since this number is
directly related to tD, via Eq. (2), one may expect to
156802-2



-10
0

10V 0

4 π

φ
0

1
T

-10
0

10V

-10
0
10V 0

4 π

φ
0

1
T

-10
0
10V

FIG. 2 (color). AB transmission T versus the AB phase �
and the gate voltage V, for one (left) and two (right) non-
interacting resonances.
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extract �D from a fit to Eq. (7), taking advantage of the
dependence of the denominator on cos�. Physically, this
dependence originates from the infinite sum over electron
paths which circulate the ABI ring. The rest of this Letter
is devoted to the conditions for such an extraction. Gen-
erally, this is not trivial, as one needs the detailed depen-
dence of � on cos� and on the various parameters. We
have presented this dependence for �ext, but not for �int.

The extraction of �D becomes easy when one may
neglect �int. The simplest case for this is for single-
electron scattering, when �int � 0. Interactions (i.e., U)
are also negligible for a relatively open dot, with small
barriers at its contacts with the leads [21]. Another effec-
tively single-electron scattering case arises near a
Coulomb blockade resonance, when the effect of interac-
tions can simply be absorbed into a Hartree-like shift,
�D ��int ! �D � NU, if one assumes that N depends
smoothly on the number of electrons on the QD, and not
on � [20]. If one may neglect �int, then � � �ext is given
in Eq. (6). Using also Eqs. (2) and (3), we find

T � jCj2T D
1� K2 � 2K cos�

1� 2P�z� cos�� �Q�z� cos��2
; (8)

where z � �J2LI
2
L � J2RI

2
R�=�2JLJRILIR�, P � Re�vtBtD	,

Q � jvtBj
2T D, and v � e2ijkj=�2 sin2jkj� depends only

on the Fermi wave vector k, independent of any detail
of the ABI. A five-parameter fit to the explicit � depen-
dence in Eq. (8) for given values of V and V0 then yields
jCj2T D, K, z, P, andQ, and, thus, cos��D��B� 2jkj� �
P=

����
Q

p
, from which one can extract the V dependence of

�D. The same V dependence of �D is also contained in
K / �cot�D� cotjkj�. As discussed after Eq. (2), our
model also implies that T D � �2

D sin
2��D�. Since the V

dependence of T D can also be extracted from the fitted
values of either jCj2T D or Q, we end up with several
consistency checks for the determination of �D. Addi-
tional checks arise from direct measurements of T D
and T B � jtBj2, by taking the limits jV0j � j�0j !1 or
jVj � j�Dj !1.

The left frame in Fig. 2 shows an example of the V and
� dependence of T for this limit (no interactions), with
k � �=2 and JL � JR � IL � IR � 1, V0 � 4 (in units
of J), implying K � �D=�0 � V=V0. Far away from the
resonance T � 1, Q� jPj � 1 and jKj � 1, yielding
the two-slit-like form T � A� B cos�, dominated by its
first harmonic, with B=A � 2�K�1 � P	. However, close
to the resonance T shows a rich structure; the denomi-
nator in Eq. (8) generates higher harmonics, and the two-
slit formula is completely wrong. This rich structure may
be missed if one neglects parts of the � dependence of �,
as done in Ref. [16]. Note also the Fano vanishing [22] of
T for V � 10 at � � 2n�, with integer n. Without inter-
actions, everything can be extended to a QD with many
resonances, e.g., due to Coulomb blockade shifts in the
effective �d with the number of electrons. Using a gen-
156802-3
eralization to Eq. (8), given in Ref. [14], the right frame in
Fig. 2 shows results for two resonances, with �D � �5.
Interestingly, Fig. 2 is qualitatively similar to the experi-
mentally measured transmission in Ref. [11]. However,
thus far there has been no quantitative analysis of the
experimental data.

To treat the general case, we need information on �int.
First of all, we emphasize that a successful fit to Eq. (8)
justifies the neglect of the � dependence of �int. If the
various procedures to determine �D from Eq. (8) yield
the same V dependence, this would also confirm that �int

is negligibly small. A failure of this check, or a more
complicated dependence of the measured T on cos�,
would imply that �int is not negligible.

As seen from Eq. (6), �ext is fully determined by a
single ‘‘visit’’ of the electron at ‘‘ref.’’ For small T B, or
large jV0j � j�0j, it is reasonable to conjecture that �int is
also dominated by such processes. In that case, we ex-
pect �int to be proportional to the same brackets as in
Eq. (6); i.e., �int � w�z� cos��, with a real coefficient w.
This yields the same dependence of T on cos� as in
Eq. (8), with a shifted coefficient v. If w depends only
weakly on V, then this shift has little effect on the
determination of �D. Again, the validity of this approach
relies on getting the same V dependence of �D from all of
its different determinations.

The situation becomes more complicated near a
Kondo-like resonance. Maintaining the (nontrivial) as-
sumption that GD � 1=�!� �D ��D�!�	, the Kondo
peak at the Fermi energy must be generated by �D. For
the intrinsic QD, this yields �D � �=2 and tD � �D,
resulting in a V independent plateau for T D. A priori, it
is not obvious what happens in the presence of the refer-
ence path. Hofstetter et al. identified the Kondo region by
requiring that the phase �res of the fully dressed Green
functionGD be equal to�=2. Our result forGD shows that
this is impossible: The phase �res depends on�, via the �
dependence of �, and thus cannot be set at the constant
value �=2. (Apparently, this� dependence was neglected
in the analytic parts, and was weak for the numerical
parameters used in Ref. [16].) Alternatively, one might
assume that the bare QD sticks to the Kondo resonance,
156802-3
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and thus �D � �=2 (independent of V) even in the ABI.
Equation (7) then replaces the Kondo plateau by a com-
plicated dependence on � (including the first harmonic),
which differs significantly from that of Ref. [16]. Clearly,
this limit requires more research.

Finally, we give some more details of our derivation.
Our Hamiltonian, which simply adds the reference path
to that of Ng and Lee [18], is

H � �D
X

�

dy�d� �
U
2

X

�

nd�nd� �
X

k�

�kc
y
k�ck�

�
X

k�

�V kd
y
�ck� �V �

kc
y
k�d�� � �0

X

�

cy0�c0�

�
X

k�

�Ukc
y
0�ck� �U�

kc
y
k�c0��; (9)

where cyk� creates single-particle eigenstates (with spin
�) on the unperturbed ‘‘background’’ chain (with IL �
IR � J, JL � JR � 0), with eigenenergy �k � �2J cosk,
while c0� �

P
k ck�=

����
N

p
, Uk � ���IL � J�e�ik�

�IR � J�eik	=
����
N

p
, and V k � ��JLei�‘�ik � JRe�i�r�ik�=����

N
p

. The operators on the dot, d� and dy�, anticommute
with ck�, cyk�. Also, nd� � dy�d�, and � � ��.

As stated above, one can derive Eq. (4) by adding to
Eq. (2) a power series in IL and IR. A more general
approach uses the standard relation between the 2
 2
scattering matrix Tkk0 and the matrix of retarded single-
particle Green functions, Gkk0 �!� � �kk0g

0
k � g0kT

�
kk0g

0
k0 ,

with g0k�!� � 1=�!� �k�, evaluated on the energy shell,
! � �F � �k � �k0[5]. The equation-of-motion (EOM)
method is then used to express �!� �k�Gkk0 �!� and
�!� �k�Gkd�!� as linear combinations of each other
and of GD�!�, allowing us to express each of them (and
thus also t / Tjkj;jkj) in terms of GD�!�, yielding Eq. (4).
Since we do not use an explicit solution for GD�!� itself,
we do not need to deal with the higher order correlation
functions (due to U), which appear in its EOM.

We hope that our paper will stimulate attempts to fit
experimental data to our Eq. (8), and to compare the
resulting �D with its direct estimate via T . This proce-
dure should work in many cases. We also hope that our
paper will stimulate more detailed theoretical calcula-
tions of �int. As explained, the existing approximate
calculations miss the crucial � dependence of these
interaction-dependent terms.
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