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Elastic Properties of 2D Colloidal Crystals from Video Microscopy
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Elastic constants of two-dimensional (2D) colloidal crystals are determined by measuring strain
fluctuations induced by Brownian motion of particles. Paramagnetic colloids confined to an air-water
interface of a pendant drop are crystallized under the action of a magnetic field, which is applied
perpendicular to the 2D layer. Using video microscopy and digital image processing we measure
fluctuations of the microscopic strain obtained from random displacements of the colloidal particles
from their mean (reference) positions. From these we calculate system-size dependent elastic constants,
which are extrapolated using finite-size scaling to obtain their values in the thermodynamic limit. The
data are found to agree rather well with zero-temperature calculations.
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FIG. 1. A snapshot of the triangular lattice of paramagnetic
colloidal particles. A few thousand snapshots such as this,
ity theory but small enough such that the Brownian
motion of the particles is observable, thermally induced

taken at regular time intervals of about 1 s, were used to
calculate elastic constants.
During the last two decades interest in colloidal sys-
tems has grown substantially, on one hand because of
their widespread technological applications and on the
other due to the availability of precisely calibrated par-
ticles for use as model systems for studying phenomena
in classical condensed matter physics [1]. The crystal-
lization of colloids, both in two and three dimensions, has
been a continuous matter of interest. The research mostly
focused on the analysis of structure and dynamics of
colloidal systems on different length and time scales
through static or dynamic light scattering techniques.
Measurements of elastic constants of colloidal crystals,
however, have been limited to the determination of
the shear modulus �. This was based on the observation
of shear induced resonance of a crystal using light scat-
tering techniques (see [2] for a recent work). The value of
� is found to depend strongly upon the crystalline mor-
phology and changes significantly between randomly ori-
ented crystallites and shear-ordered samples [3]. In
addition, using this method only a very reduced number
of modes can be investigated. Very recently, the elastic
moduli of colloidal solids have also been estimated [4] by
observing relaxation behavior after deformations using
laser tweezers.

In this Letter, we report an experimental determination
of the equilibrium elastic properties of two-dimensional
(2D) colloidal crystals from ‘‘snapshots’’ of particle po-
sitions obtained using video microscopy. The present
method is completely noninvasive, accurate, and free
from any adjustable parameters.

The mechanical properties of a macroscopic solid,
according to classical elasticity, are well described by a
small set of elastic constants. These can be measured by
the strain response of the solid under the application of an
appropriate (macroscopic) stress. On a mesoscopic scale,
which is still sufficiently coarse grained to apply elastic-
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strain fluctuations can be used to determine elastic con-
stants.We have carried out a detailed study of these strain
fluctuations in a two-dimensional (2D) colloidal crystal
by recording the microscopic positions of the particles
within a square cell (of size L) containing a defect-free
single crystal (see Fig. 1). Recordings were made at regu-
lar time intervals—large compared to typical correlation
times of the colloid. Uncorrelated snapshots obtained are
analyzed to calculate the average particle positions—the
‘‘reference’’ lattice. The gradients (obtained by finite
differences) of the displacement vectors then yield the
microscopic strains. These microscopic strains are used to
obtain strain fluctuations over a hierarchy of length
scales corresponding to smaller subcells of size Lb < L
contained within our cell. The width of the probability
distributions of the strains is related to the elastic con-
stants Cijkl�Lb� obtained as a function of Lb which may
subsequently be extrapolated, using a systematic finite-
size scaling analysis [5]. The macroscopic (L! 1) val-
ues of these quantities, thus obtained, are compared to
theoretical predictions without any fitting parameters.
The central result, the bulk (K) and shear (�) elastic
moduli, is shown as a function of the interaction strength
� for our colloidal system (see below) in Fig. 2.
 2003 The American Physical Society 155506-1



0

500

1000

1500

2000

0 200 400 600

K+m 
5.  

el
as

tic
co

ns
ta

nt
s

(k
T/

a2 )

Γ

µ

FIG. 2. The comparison of the measured elastic constants (in
units of kT=a2, where a is the lattice parameter) to the zero-
temperature calculation (solid lines) reveals a very good agree-
ment. Note that the shear modulus � is multiplied by 5 for
reasons of clarity.
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Our experimental setup [6,7] is composed of super-
paramagnetic spherical colloids [8] of diameter d �
4:5 �m and mass density 1:7 kg=dm3. They are confined
by gravity to a water-air interface, which is formed by a
cylindrical drop suspended by surface tension in a top-
sealed ring. The flatness of the water-air interface (� �
8 mm) is controlled within �1 �m[6]. For weak mag-
netic fields B applied perpendicular to the interface the
induced magnetic moment M depends linearly on B, i.e.,
M � �B with an effective magnetic susceptibility � [6].
The repulsive magnetic dipole-dipole potential, between
particles i and j separated by a distance rij, V�rij� � �r�3

ij
dominates the interaction and is absolutely calibrated by
the interaction strength � � ��0=4����B�2��n�3=2=kT,
where n denotes the 2D volume fraction of the particles,
k is the Boltzmann constant, T is the ambient tempera-
ture, and distances, rij, are in units of the mean interpar-
ticle spacing.

The experiments were carried out as follows: At high
�, in the crystalline phase, the system was equilibrated by
the application of small ac magnetic fields in the plane of
the particles. Eventually a defect-free crystal containing
several thousand particles is obtained. The entire sample
consists of approximately 105 particles. The coordinates
of typically 1000 particles in the (square) field of view
were recorded in time. About 500 to 1000 independent
coordinate sets, each about a second apart, are necessary
to obtain sufficient statistics. The time interval corre-
sponds to diffusion over about 1 �m which is about one
pixel—the limit of resolution of our digital camera. The
results do not vary significantly over the range of the
number of data sets used.

After the determination of the mean position of each
particle R0 (taken over the entire set) [9] the instanta-
neous displacement u�R0� � R�R0 from the mean po-
sition was calculated for each frame and for all particles.
155506-2
The set of coordinates R0 constitutes, therefore, our
reference lattice and the fluctuating displacement variable
u�R0� is known at every reference lattice point. Once the
displacements are known, the elements of the elastic
strain tensor �ij and the local rotation � may be defined
as gradients of the displacement u over the spatial coor-
dinates r.
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When the derivatives are replaced by appropriate finite
differences, these quantities may be evaluated at every
reference lattice point R0. In order to evaluate elastic
constants, the microscopic strains and rotations need to
be coarse grained or averaged over a sequence of subsys-
tems (obtained in our case by dividing our square cell
into integral numbers of smaller square subcells) of size
Lb � L=b (b � 4; 5; . . . ; 18) to obtain size dependent
strains and rotations �bij�Lb� [and �b�Lb�]:

"bij�L
b�; �b�Lb� �

1

L2b

Z
Lb

"ij�r�; ��r� dr: (2)

The fluctuations of these quantities for a particular set of
subsystems (all of size Lb) over the different snapshots
yield elastic constants for the size Lb from standard
thermodynamic relations. Although this procedure has
been used [5] for obtaining elastic moduli of the hard
and soft disk systems from computer generated configu-
rations, we find that some essential modifications are
required before the methods of Ref. [5] can be applied
to our system. In a typical computer simulation [5,10–14]
the system is placed in a hard constraint determined by
the ensemble used. Our experimental cell, on the other
hand, is a small region embedded within a much larger
crystal. The only constraints which are appropriate for
this case are that the displacements u are continuous
throughout the system and u�r� ! 0 as r ! 1. In the
limit of linear elasticity for our system where the elastic
correlation length is assumed to be much smaller [5] than
Lb, our problem reduces to the determination of the total
energy of a single, independent strain fluctuation in an
elastic medium subject to these constraints.

Consider, therefore, a region of size Lb, with a fixed
constant strain (or rotation) �bij�Lb� [�b�Lb�] embedded in
an (infinite) elastic continuum. This general problem has
been studied in detail in several standard texts on clas-
sical theory of elasticity [14,15]. Recall that a 2D hex-
agonal lattice has isotropic elastic behavior [14] and,
therefore, can be completely described by two independ-
ent elastic constants, which we choose to be the bulk
modulus K and the shear modulus �. While the former
is related to the fluctuations of the volume (area in 2D) of
the subsystems the latter may be evaluated from the
fluctuations of the angle of rotation of the subsystems.
Let us focus on a small subcell within our cell. Consider
for the moment that we have a disk of radius Rb for
155506-2
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FIG. 3. (a),(b) Probability distribution of the box-size aver-
aged strain fluctuations of �Vb=Vb � "bxx � "byy as a function of
the (linear) scaling box size Lb � L=b for � � 508 (a) and 69
(b). (c),(d) Same as in (a) and (b) for the angle �b � "bxx � "byy
for � � 508 (c) and 69 (d). Note the difference in the y scale
between (a) and (b) as well as between (c) and (d). The lines are
spline fits through the data serving as guides to the eye.
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simplicity; the final results will be cast in a form inde-
pendent of the shape of the subsystem. Within this disk,
the strains are given by their values which are the aver-
ages over the area of the disk. This disk is embedded in an
infinite elastic medium with elastic moduli K and �.

We consider first a homogeneous expansion (or com-
pression) of the disk by Rb ! Rb � �r. The correspond-
ing radial displacement ur is given as

ur � �r 	 r=Rb; r < Rb;

� �r 	 Rb=r; r > Rb: (3)

The angular part u’ � 0 by symmetry. The displace-
ments �ur; u’� are related to the strain tensor by the
following equations [15]:
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(4)

Making use of the (quadratic) free energy density f of
the elastic continuum,

f � 1
2
K�"rr � "’’�

2 ��f�"rr � "’’�
2 � 4"2r’g
; (5)

and integrating f over the entire space, both within
and outside the disk (to account for the deformation
of the surrounding medium) and using the strains calcu-
lated from Eqs. (3) and (4), we get the energy E �
2��K ����r2 necessary to expand the disk by �r.
We may, now, eliminate the shape dependent prefactors
by using the volume V � �R2

b and the volume change
�V � 2�Rb�r of the disk, to obtain finally, the energy
E � �K ����V2=2V. Using the equipartition theorem
we have, therefore,

h��Vb�
2i=Vb � kT=
K�Lb� ���Lb�
; (6)

relating the fluctuation of the volume Vb � L2b of the
subcell to the sum of the bulk and shear moduli. The
above relation together with �Vb=Vb � "

b
xx�L

b� �
"byy�L

b� may now be used to obtain K�Lb� ���Lb� for
our subcells.

A similar treatment leads to a relation between � and
the local rotation of the system � [Eq. (1)]. The rotation of
a disk of radius Rb by an angle � leads to an angular
displacement u’�r� � � 	 R2

b=r for r > Rb [u’�r� � 0 for
r < Rb]. Applying Eq. (4) and integrating the energy
density [Eq. (5)] leads to the total energy for the rota-
tion E � 2���2R2

b. Equipartition then yields

� �
kT
Vb

1

h�2�b�2i
: (7)

This equation has precisely the same structure as Eq. (6)
and, therefore, similar finite-size scaling schemes can be
applied. Thus Eq. (7) together with Eq. (6) enables the
determination of the elastic constants of the system.
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In Fig. 3 the probability distribution of the incremental
volume �Vb=Vb � "

b
xx � "

b
yy and �b is shown as a func-

tion of the scaled box size b � L=Lb for two values of the
interaction strength �. The width of the (Gaussian) dis-
tributions decreases both with an increasing box size Lb
and an increasing value of �. The mean square fluctua-
tions are obtained by fitting the data to a normal distri-
bution and extracting the standard deviation.

Once the Lb-dependent elastic moduli are obtained,
usual finite-size scaling [5] can be used to extrapolate
the results to the thermodynamic limit. This is shown in
Fig. 4 where we have plotted Lb=L� 1=
K�Lb� ���Lb�

as a function of Lb=L. The slope of the curve, obtained
from a straight line fit to the data, gives the value for
1=
K�L � 1� ���L � 1�
. A similar finite-size scaling
is used to obtain ��L � 1� separately. These results are
shown in Fig. 2 both for K ��—as obtained from
Eq. (6)—and for � from Eq. (7) as a function of the
interaction strength �. Note the accuracy of the determi-
nation of the elastic moduli for our system which is
facilitated by the fact that the interaction potential � of
our system is precisely calibrated. The straight lines
through our data in Fig. 2 are the results from a T � 0
155506-3
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gives the infinite system values of the (inverse) moduli.
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calculation of the elastic constants of a 2D triangular
solid composed of particles interacting with an inverse
cubic potential [16]. For all inverse power potentials the
T � 0 limit is exact to lowest order[17]. Considering the
deformation of a perfect static triangular solid of par-
ticles interacting with a r�3 potential one obtains the
relation � � K=10 and the numerical result K � 3:461 	
�, where the numerical coefficient is evaluated by per-
forming a rapidly convergent lattice sum. The agreement
is excellent (considering the fact that no fitting parameter
is available) over a wide range of interaction strengths
� down to values of 70—the melting transition occurs at
� � 60 [7].

Finally, a few words on the possible uncertainties
involved in our determination of the elastic moduli
seem to be in order. First, we have neglected all fluctua-
tions of the magnetic moment, both in amplitude and
angle. Since a superparamagnetic colloid particle is of
macroscopic dimensions compared to typical magnetic
length scales this assumption seems to be justified.
Second, we have assumed that the particles fluctuate on
a flat, two-dimensional air-water interface. An estimate
[6] of the out-of-plane fluctuations is given by the ratio of
the gravitational length lg � kT=mg (wherem is the mass
of the particles and g is the acceleration due to gravity)
and the interparticle spacing; this is typically 1 in 103.
Third, a possible limitation of this scheme, at least in its
present form, is the requirement that the displacement
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field u�r� be analytic in order to obtain strains by taking
derivatives. Therefore one needs to restrict analysis to
dislocation free regions of the sample — which is pos-
sible only if the system is sufficiently far away from a
melting transition [7]. Suggestions [5,12] to circumvent
this problem are, however, computationally difficult to
implement. The study of elastic properties of paramag-
netic colloids in the presence of obstacles and inclusions,
as well as a dynamical elastic response, is an interesting
direction for further research. This is particularly suited
for our technique since it provides a local (and therefore
precise) probe [4] for elastic properties.
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