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It is proposed that two ideal amorphous structures, type I and type II, based on maximally random
jammed packing of spheres of equal size, form a distinct class of ideal amorphous solids. The ideal
amorphous structures contain wide variations in local density, limited by the condition of solidity. Four
distinct characteristics, based on statistical geometry and topology, are shown to define this class.
Voronoi tessellations carried out on simulated cells of random packed spheres and amorphous polymers
give a broad distribution of individual volumes, skewed, with a tail at the high volume end.
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Torquato et al. [1] pointed out the futility of searching
for the universal density of a randomly close packed
(RCP) body and, instead, proposed the existence of
a maximally random jammed (MRJ) state, encompass-
ing a group of structures with maximized disorder
parameters.

This view opens the way for the definition of ideal
amorphous solids (IAS), which can serve as models
of real materials, including amorphous polymers. The
search for a definition of an ideal amorphous solid stems
from the author’s interest in a complete theory of plasti-
city in amorphous solid polymers. It derives from the
understanding of, and analogy with, crystalline solids,
for which the dislocation theory of plasticity has been so
successful. The development of plasticity theory in crys-
talline solids depended on the confluence of three essen-
tial elements: (i) theory of crystallography providing the
definition of ideal crystalline solids, (ii) mechanisms of
plastic deformation (edge and screw dislocations), and
(iii) an experimental method of verification (electron
microscopy).

The above three elements are also necessary and
essential for a complete understanding of plasticity in
amorphous polymers. A method equivalent to electron
microscopy is effectively provided by computer simula-
tions and nuclear magnetic resonance [2,3]. Many theo-
ries of mechanisms of plastic deformation in polymers
exist in published literature [4]. However, the first essen-
tial element, namely, a theory of the structure of amor-
phous solid polymers, is not developed yet in sufficient
detail to afford the clarity of understanding required to
describe precisely individual molecular motions and the
accompanying changes in nanostructure during plastic
deformation occurring in amorphous polymers. It is fre-
quently tacitly assumed that amorphous materials are
found at the limits of disorder, and especially for poly-
mers, amorphicity is usually defined by what it is not,
rather than by what it is.

From the work of Torquato et al., the essential points of
direct relevance to amorphous materials can be summar-
ized as follows:
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(1) The “universal”” density of RCP structure cannot be
defined mathematically, nor can it be found experimen-
tally—it does not exist as a unique quantity. This is
inferred from the conflict between “random’ and “‘close
packed” states, since arbitrarily small increases in disor-
der can be achieved at the expense of small decreases in
density, and vice versa.

(i1) Introduction of the concept of the MRI state
in which all particles (spheres) are jammed; a jammed
particle cannot be translated. The definition of the
MR state is based on minimization of order parameters
(Q or T), subject to the constraint of the jammed state.

(ii1) A small number of “‘rattler’ particles is admitted;
therefore, a variety of structures must exist, bound by
density and randomness limits.

The intention here is to introduce a more narrowly
defined MRIJ structure as an IAS; therefore the issue of
density must be elaborated on. Consider a body created by
random dense packing of N hard spheres of identical
diameter, a, which are to a large extent in contact. The
body is not subject to any force field (including gravity).
The spheres do not overlap, nor is there any attraction or
friction between them; therefore there is no preference for
the number of nearest neighbors other than the require-
ment for dense packing.

The body has numerical density, p, = N/V, which is
conveniently expressed in terms of a packing fraction. Let
the body be divided into smaller pieces, and the pieces
divided into smaller pieces. For many subsequent divi-
sions the density of each piece will be the same.
Eventually, there will be a piece of the smallest represen-
tative volume element (RVE) for which the density is still
the same and equal to p, (this translational invariance in
the mean is a requirement imposed on all macroscopi-
cally large disordered systems [5,6]). By implication, a
further division into volumes smaller than RVE will
result in variations of density. Therefore, p,, is an average
density of the body: p, = p. In the limit, the largest
variations in local densities, p;, will be found when
volumes around each sphere are expressed in terms of
corresponding Voronoi polyhedra [7,8]. From the implicit
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assumptions, one can make the following observations:
(1) Density fluctuations for individual spheres are in both
positive and negative sense from the average density. (2)
There exists a well defined maximum density, pn.« =
/+/18 = 0.74, that occurs in densely packed structures
[2] and provides the absolute limiting value on the right-
hand side of the distribution. (3) For a symmetric distri-
bution around an asymptotic average value, p = 0.64 [1],
the following is true |ppin — Pl = |pmax — 2|, providing
a value for the minimum density, p;, = 0.54 [curve (a)
in Fig. 1]. (4) For a nonsymmetric distribution [curve (b)
in Fig. 1] the minimum value of density (for any sphere
inside the body) is less than that for the symmetric case,
but greater than zero: 0 <K p,i, < 0.54.

An MRIJ state implies as wide a distribution of local
densities as possible, whereas solidity requires dense
packing and imposes spatial constraints on the spheres.
Rotations of spheres can be omitted, but translations must
be considered. A sphere is in a fixed position (called
“jammed” in [1]) if it is supported on its surface by a
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FIG. 1 (color online). Top: hypothetical frequency density
distribution functions, (a) symmetric, and (b) skewed.
Bottom: Voronoi volume distribution for random packing of
spheres with an average packing fraction = 0.59. Notice the tail
at high volumes.
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minimum of four points with at least one of these on the
other hemisphere, which is equivalent to saying that its
center is located within the tetrahedron formed on the
four points. If all spheres are in fixed positions, then the
body is perfectly solid. However, the body can remain
solid and stable even if a number of spheres inside it are
allowed some degree of kinetic freedom (called “‘rat-
tlers” in [1]).

We conclude that the sphere’s position is (i) fixed, when
for 4 = N =9 touching contacts with neighboring
spheres, no more than (N- — 1) are located on one hemi-
sphere; for N > 9 the sphere is always in a fixed position
(the neighboring spheres must also be in fixed positions)
and (ii) loose, when the touching contacts,2 = N- = 9 in
number, are all on one hemisphere only; the sphere is
contained but not fixed and can move to other loose
positions (the restriction on neighboring spheres being
in fixed positions need not apply).

It is postulated that, for every V > RVE, a necessary
structural solidity condition can be expressed as follows:

|
Js==>Ji = Juio (1)
NS
where J; = Vu? + v> + w?, u, v, and w are the maximum
allowed displacements of a loose sphere in the x, y, and z
directions, respectively, and 0 = J;, is a characteristic
property for a given type of structure. The value of J ., or
rather the distribution of Jis must be so chosen that for
any given RVE the body remains solid. The size of RVE is
defined by the mathematical probability statement

Pla-pl=d) =a, 2

where u is the mean density of RVE, p is the mean
density of the body, and the tolerance, d, and the con-
fidence limit, «, are chosen in accordance with specific
requirements. With this preamble, it is now possible to put
forward the definition of an ideal amorphous solid of
type I and type II:

Definition 1: An MRIJ structure, composed of identical
size spheres, is an ideal amorphous structure of type I
(IAS-T) if it possesses all the characteristics described
above, and for which the RVE attains a maximum size
subject to conditions (1) and (2).

On a macroscale, such a body is said to have an amor-
phous structure without similarity and/or translational
order. An arbitrary rotation about any point within the
body results in the same density distribution, and hence
the same physical properties. The structure is motion
invariant and isotropic [5,6].

On a nanoscale, the IAS possesses four statistical ge-
ometry elements:

1. A translational element is defined by a random walk
along centers of spheres in contact with each other. Let the
initial position of the walk be denoted as R, and sub-
sequent steps by ry, r,, ..., r,; then the final position is
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R,=Ro+>r; 3)

If the steps are random and mutually independent, then
the mean-square-root end-to-end distance of the walk is a
measure of this element, and it must obey the relationship

(R = an, 4)

where n is the number of steps taken and (R2)/n is
constant. For a self-avoiding random walk (particularly
relevant to Definition 2 below) the mean-square-root end-
to-end distance of the walk is [9]

(R%}WZ) = /A n(6/5), (5)

where A is a constant and (R2)/n diverges as n — oo.

2. A spherical element defines the disposition of the
contact points on the sphere’s surface. Its measure must
reflect the departure from symmetrical arrangement of
the contacts. The Q measure used by Toquato et al. [1] is
suitable. An alternative measure is proposed below.

Let the contact points of a chosen sphere be numbered
sequentially, denoted by the index k. The contact angle,
B 1s defined as an angle formed by two lines emanating
from the center of the sphere to the two contact points, k
and [/, where [ = k + 1. Then the contact angle variation
for an individual sphere, sg, is defined by the following
expression:

1 Nzl
567 N Z 1Bk = B+l (6)
Ne (5

with [ taking on the value of 1 when [ > No — 1. It is
noted that sz reaches maximum value when the greatest
irregularity in the distribution of the contact points on the
sphere’s surface is found and tends to the value of zero
when the spatial disposition of contacts becomes sym-
metrical (for any allowed value of N().

3. A mirror element is defined by the requirement that
at every contact point, the touching spheres are a mirror
image of each other. This element ensures that the spheres
are identical in size and type. In an TAS-I, all spheres
possess a minimum of 2 and a maximum of 12 mirror
elements.

4. A central element describes a geometrical relation-
ship between a sphere and its corresponding Voronoi
polyhedron. The sphere possesses a central element if it
is in the center of its Voronoi polyhedron. This occurs only
and if the surrounding neighbors are in centrosymmetric
positions with respect to the sphere.

Definition 2: An ideal amorphous structure of type 11,
composed of linear freely jointed chains of hard spheres,
is one in which the positions in space of the centers of
spheres in the chains are identical with those in TAS-1.

The above structure can be constructed along the
following lines: Consider a cell containing IAS-I with
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N randomly packed equal sized spheres (where N is a
large number). Each sphere has a number of touching
neighbors. Make a chain of touching spheres: Chose one
sphere as the starting point and thread it with one of its
touching neighbors. Next, thread the second sphere at
random with one of its touching neighbors, except the
one already joined to. Continue in this manner the three
dimensional self-avoiding walk (SAW) until a chain of
n — 1 links is made. Next, choose another unattached
starting sphere and, following the above process, con-
struct another chain of n spheres. Repeat the process until
(N/n) chains are formed. Since N > n, there are many
ways to form the chains, and therefore there exists a finite
probability that it is possible to form (N/n) chains with-
out violating the SAW, and without any “free” sphere(s)
left over. This cell of linear freely jointed chains con-
stitutes an ideal polymeric amorphous solid.
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FIG. 2. Top: distribution of Jis [see Eq. ()], J =1 corre-
sponds to one sphere diameter. Bottom: corresponding distri-
bution of s’ﬂs in radians [see Eq. (6)].
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FIG. 3 (color online).
volumes from the graph on the left.

By virtue of the fact that the starting structure is an
IAS of type I, and since the arrangement of the spheres is
not altered or disturbed by the process of chain forma-
tion, the ideal amorphous solids of type I and type II have
the same geometrical properties and therefore must be-
long to the same class of amorphous structures. Close
packed spheres with a preference for n contact points [10],
or two or three different kinds, also form disordered
structures [2], as do spheres each of different size [11].
It is anticipated that they will form separate amorphous
classes.

MRI cells of densely packed spheres have been com-
puter simulated using statistical geometry algorithm and
Voronoi tessellations were carried out [12]. An example
of the distribution of Voronoi volumes for a cell of pack-
ing fraction = 0.59 and 6.6% loose spheres is shown on
the bottom in Fig. 1. The result supports the nonsym-
metrical distribution shown on the top. Figure 2 shows the
corresponding distribution of J;, Eq. (1), and the corre-
sponding distribution of sz, Eq. (6). The data support
the conjecture of a random body. Also, amorphous cells
of poly(methyl methacrylate) (PMMA) and poly(carbon-
ate) were simulated using standard methods [13].
Measurements of Voronoi volumes, (Vy), for all individ-
ual atoms were carried out. The Voronoi volumes of atoms
belonging to the same monomer were added together, the
result showing scattered values as can be seen on the left
in Fig. 3. The corresponding frequency distribution of the
Voronoi volume has the characteristic skewed shape, as
shown on the right. The example included here is one of
many that we have obtained for individual or groups of
atoms: (i) for united atom freely jointed chains [14] and
(i1) for chiral CH; groups in polypropylene [15]. No sym-
metrical distributions have been published, although sug-
gestions have been made [16].

The significance of the contribution is in two areas: (i)
emerging structure of a theory of ideal amorphous solids.
The four statistical geometry elements define precisely
and adequately the properties of IAS type I and type IL
Elaboration will be given in a full paper [12]. (ii) The
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Left: Voronoi volumes for a sequence of monomers on a chain in PMMA. Right: distribution of the Voronoi

understanding of the wide density fluctuations in amor-
phous polymers is helpful in developing a theory of plas-
ticity in glassy polymers, based on the concept of
constriction points published before [17,18].
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