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Low-Dimensional Models for Vertically Falling Viscous Films
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Long wave evolution on free falling viscous films is described using a new evolution equation. The
scaling proposed here brings in the viscous and pressure correction terms that are missing in the ex-
isting long-wave equations. Small amplitude expansion of the equation gives a dissipative form of the
Kuromoto-Sivashinsky equation. Improved accuracy of the new equation over existing equations is
demonstrated by comparison of neutral curves with Orr-Sommerfeld equations and experimental data.
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to these equations is the Nusselt’s flat film solution ob-
tained by balancing the viscous and gravitational forces.

expected to be valid [4]. The equation also predicts that
all the linearly unstable waves travel with the same
Surface waves on a vertically falling film are known to
exhibit complex spatial and temporal patterns and have
been a subject of interest for the last 50 years [1,2].
Studying the behavior of these waves with the governing
Navier-Stokes (NS) equations is a complicated and com-
putationally expensive task because of the nonlinearities
in the equations and boundary conditions, and the pres-
ence of a moving interface. Alternatives to the NS equa-
tions for describing these waves are low-dimensional
models derived from the NS under certain assumptions.

Single evolution equations form a category of low-
dimensional models where the dynamics of the film is
quantified with a partial differential equation in x and t
for scaled film thickness h (x; t). A well-known example
of single evolution equation is the long-wave (LW) equa-
tion [3] derived by Benney (1966),
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Here, Re is the Reynolds number and We is the Weber
number. This equation is obtained by a perturbation ex-
pansion on the NS in terms of wave number �, with the
assumptions that Re and �2We are of O�1�. A weakly
nonlinear truncation of this equation gives the well-
known Kuromoto-Sivashinsky (KS) equation.

It is now recognized that the above LW equation and
extensions of it to higher orders in �, cannot describe the
wave amplitudes observed in experiments [4–7]. The
reason was identified to be the omission of pressure cor-
rection and viscous dissipation terms in these equations.
Though higher order expansions [8,9] include these miss-
ing terms, comparison of linear stability results to that of
Orr-Sommerfeld (OS) equations shows that these expan-
sions also diverge in the linear limit. In this contribution,
we present a new scaling and use it to develop a single
evolution equation that can describe wave evolution on
viscous films both qualitatively and quantitatively.

The two-dimensional NS equations for film flow down
a vertical wall can be found in [4,7]. One of the solutions
0031-9007=03=90(15)=154501(4)$20.00 
The velocity profile for this case is parabolic. The equa-
tions are made dimensionless by choosing Nusselt’s aver-
age velocity uN and film thickness hN as the characteristic
velocity and length scales. Time and pressure are scaled
by hN=uN and �uN=4hN, respectively. The resulting sys-
tem of equations has two independent dimensionless
groups, the Kapitza number (Ka � �1=3=g1=3�4=3) and
the Reynolds number (Re � 4uNhN=� � gh3N=3�

2),
where  is the surface tension, � is the density, � is the
viscosity, and � is the kinematic viscosity. The Kapitza
number is a function of fluid physical properties and
hence constant for a given fluid. A combination of
Kapitza and Reynolds number gives the Weber number,
defined as We � =��u2NhN� � 31=345=3Ka=Re5=3.

Traditionally, the Navier-Stokes equations are reduced
to a single evolution equation using a perturbation ex-
pansion in � along with the assumptions Re�O�1� and
�2We�O�1� (long-wave scaling). The wave number � is
introduced into the dimensionless equations by scaling
the length in the flow direction with an unknown wave-
length �=2�. The wave number ��� 2�hN=�� is assumed
to be small. At the lowest order O��o� in the expansion,
viscous and gravitational forces balance each other. The
evolution equation at this order is given by

ht � 3h2hx � 0: (2)

This equation describes the behavior of waves with in-
finitely large wavelengths. For describing finite wave-
lengths, the expansion should be carried to higher
orders. At the next order O��1�, inertial and capillary
terms correct the lowest order equation as given by the
LW equation (1). It should be noticed here that, irrespec-
tive of the magnitude of viscous, inertial, and capil-
lary terms, the correction to the lowest order solution
in the long-wave scaling always comes from the inertial
and capillary terms while viscous terms are pushed to
higher orders. Comparison of the neutral stability curves
of this equation (1) to the OS equations shows that the
curves diverge well within the region in which it is
2003 The American Physical Society 154501-1
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FIG. 1 (color online). Neutral stability curves obtained from
Orr-Sommerfeld equations for different fluids.
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dimensionless velocity (Cer) of 3. Thus, the equation
does not show dispersion of waves due to missing vis-
cous terms. To capture these viscous terms, Gjevik [8]
and Nakaya [9] carried the expansion to higher orders.
However, these higher order expansions also diverge from
the OS results and hence do not retain the qualitative
behavior of the waves [4].

The Reynolds number is normally used to distinguish
between viscous and inertia-dominated regimes. For fall-
ing films, since the film thickness and velocity are not
independent of each other, the magnitude of Reynolds
number is not sufficient to distinguish between viscous
and inertia-dominated regimes. For example, consider
water and 95% glycerin solution at the same Reynolds
number Re � 1:0. The Kapitza numbers for these two
fluids are 3371 and 0.24, respectively. The Weber num-
ber can be calculated from Ka and Re. For water the
Weber number is 48 980 while for glycerin it is 3.48. At
this Reynolds number the thickness of water film is
0.0425 mm while that of glycerin is 4.25 mm. At the
same Reynolds number Re � 1, film thickness of glyc-
erin is 100 times larger than that of water. While vis-
cous forces are dominant in the thin water film, both
inertial and viscous forces are expected to be important
in the thick glycerin film. Thus, the magnitude of
Reynolds number alone cannot distinguish between vis-
cous and inertia-dominated regimes. However, the Weber
number is large for the water film and is of order unity
for glycerin. Unlike the Reynolds number, a large Weber
number implies viscous dominated regime and a small
Weber number represents the inertia-dominated regime.
Thus, the corrections to the lowest order terms should
depend on theWeber number, not on the Reynolds number.

We replace the assumption Re�O�1� in the long-wave
scaling with Ka�O�1� and retain the largeWeber number
�2We�O�1� assumption. Rearranging the relation be-
tween We, Re, and Ka we get Re � �31=345=3Ka�3=5 �
�1=We�3=5 � �31=345=3Ka=W�3=5�6=5 � ��6=5, where
�2We � W�O�1� and � is an O�1� parameter. This
new scaling suggests that viscous terms must be given
more importance than inertial terms in the region where
��1 or (We�1). Inertial effects are dominant in the
region where We�1 or ��1. Viscous and inertial ef-
fects are of equal order when We�O�1� or ��O�1�. The
large Weber number limit where viscous and/or capillary
effects are strong is called the viscocapillary regime.

In terms of Reynolds number, the viscocapillary re-
gime corresponds to 0< Re � 31=54Ka3=5�	 5Ka3=5�.
For water, it is given by 0< Re � 654 while for 95%
glycerin solution it is 0< Re � 2:0. In the example dis-
cussed before, Re � 1 for water is well within the visco-
capillary regime, but for glycerin Re � 1 lies on the
border where viscous and inertial effects are significant.
For Re � Ka3=5 inertial effects become important. Thus,
for small Kapitza numbers, inertial effects can become
significant at low Reynolds numbers.
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The advantages of the new scaling can be seen from the
neutral stability curves of the OS equations. Figure 1
shows the neutral stability curves computed from the
OS equations as a function of Reynolds number for differ-
ent Kapitza numbers (different fluids). The Kapitza num-
ber is varied over a wide range of 1 to 3371. When the
same curves are plotted again as a function of Weber
number (Fig. 2) they collapse onto a single curve in the
limit 1=We ! 0 and are close to each other until We�
O�1�. However, when plotted as a function of Reynolds
number (Fig. 1), the curves diverge from each other at the
origin. Another important observation that can be made
from Fig. 2 is that, irrespective of the Kapitza number, the
critical wave number �c < 1 as long as the Weber number
is large, which shows that the long-wave assumption is
valid for We � 1.

Introducing the new scaling Ka�O�1� and �2We�
O�1� into the dimensionless equations, we obtain at the
zeroth order O��o�, ht � 3h2hx � 0. This equation is the
same as obtained using the long-wave scaling. However,
at the next order, pressure and viscous dissipation terms
correct the lowest order solution, unlike the long-wave
scaling where the correction comes from inertial terms.
The equation at O��2� is given by

ht � 3h2hx �
@
@x

�3h4hxx � 7h3h2x� � 0: (3)

Because of the way the perturbation parameter � appears
in the dimensionless equations, the evolution equation is
not corrected at O��1�. Inertial and capillary terms enter
the evolution equation at the next order O��1 1=5�. The
equation at this order is given by
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Since this equation includes all three viscous, inertial,
and capillary terms, we truncate the expansion at this
154501-2
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FIG. 3 (color online). Neutral stability curves for Ka � 10.
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FIG. 4 (color online). Numerical wave trace for Ka � 5:9 and
Re � 2:0.
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FIG. 2. Neutral stability curves in Fig. 1 are plotted with the
reciprocal of Weber number.
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order. Comparing Eq. (4) to the LW Eq. (1), it can be
clearly seen that the new equation includes viscous dis-
sipation and pressure correction terms. Moreover, in the
LW Eq. (1) the time derivative in the term 5

32 Reh
4ht is

replaced by its zeroth order approximation ht � 3h2hx.
We observe that this approximation, commonly made
while deriving single evolution equations yields non-
physical wave celerities and leads to poor qualitative
and quantitative agreement with OS results and experi-
mental data.

Standard temporal linear stability analysis of Eq. (4)
around the flat film solution h � 1 yields
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3� � 1355120 Re

2  3��2 � 5
384 Re
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1� 25
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2�2
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where Cer is the celerity of the waves and �Cei gives the
growth rate of the waves. A similar analysis of the LW
Eq. (1) gives

Cer � 3; Cei �
3

10
Re�

ReWe

12
�3: (7)

Comparing the results of the long-wave and the new
equation, it can be seen that the new equation includes
dispersion of the waves and relates the celerity of the
waves to the system parameters Re and We. Neutral
stability curves of different single evolution equations
are shown in Fig. 3. From the figure it can be seen that
the LW and Nakaya’s (extension of the LW to higher
orders) equation diverge from the Orr-Sommerfeld pre-
dictions, while the new equation follows the OS very
closely in the viscocapillary regime and preserves the
qualitative trend till Weber numbers of order unity.

The predictions of the new Eq. (4) in the nonlinear
regime are also determined and compared to experimen-
tal data. The equation is analyzed in a steady traveling
wave coordinate (z � x Cet, @

@x �
@
@z , @

@t � Ce @
@z . Ce
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is the celerity of the wave). In this coordinate, Eq. (4) can
be written as a set of three ordinary differential equa-
tions. The dimensionless parameters are Ka, We, and Ce.
Our analysis shows that the most complex behavior ex-
hibited by the waves in the viscocapillary regime at low
Kapitza numbers is either periodic or period two solu-
tions. Figures 4 and 5 show the wave traces obtained from
numerical simulation and experimental data for Ka � 5:9
and Re � 2:0. The experimental data are obtained from
[4,5]. (Spectral analysis of the experimental trace shows a
single dominant frequency.) For higher values of Kapitza
number, the wave structure becomes more complex. In the
asymptotic limit of Ce ! 3 and 1=We ! 0 (long-wave
limit), the system of ODE’s has a double zero eigenvalue.
We use the center manifold reduction and Melnikov’s
perturbation analysis [4] to develop analytical correla-
tions for maximum wave amplitude and celerity in this
limit:

hmax  1 � �3 Ce�=6 � 63=�25 We�: (8)

As expected, these relations depend only on the Weber
number and not on the Reynolds number. Figure 6 shows
the comparison of experimentally obtained maximum
wave amplitudes (reported in [4]) to the double zero
scaling [Eq. (8)] obtained from the model. The maximum
wave amplitudes predicted by Eq. (4) are in good agree-
ment with the experimental data.
154501-3
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FIG. 6 (color online). Triangles denote experimental data and
the straight line shows predictions of Eq. (8).
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FIG. 5 (color online). Experimental wave trace for Ka � 5:9
and Re � 2:0.
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The weakly nonlinear form of Eq. (4) can be obtained
by expanding h in terms of v as, h � 1� �2v, and
retaining terms up to O��1 1=5�. The resulting equation
in a coordinate system traveling with velocity three after
scaling v, x, and t is given by

vt � vvx � �vxxx  �vtx � vxx � vxxxx � 0; (9)

where � � 3:807 We0:1=Ka0:6, � � 1:477 Ka0:6=We1:1.
The above equation reduces to the widely studied KS
equation for � � � � 0. The KS equation omits the dis-
sipative viscous term vxxx and replaces the mixed de-
rivative term vxt by 3vxx. For � � 0, Eq. (9) reduces
to the Kawahara [10] equation, widely used for descrip-
tion of dissipative systems. Equation (9) suggests that for
physical systems where dissipative effects are not negli-
gible, the KS and Kawahara equations need to be cor-
rected with two parameters to retain the structure of
solutions exhibited by the complete NS equations.
Several examples of such systems can be found in [10].
Based on the results presented in Figs. 1 and 6, we believe
154501-4
that interfacial instabilities with significant dissipative
effects should be described using equations similar to
(4) and (9).
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