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Saturation of Nuclear Matter and Short-Range Correlations
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A fully self-consistent treatment of short-range correlations in nuclear matter is presented. Different
implementations of the determination of the nucleon spectral functions for different interactions are
shown to be consistent with each other. The resulting saturation densities are closer to the empirical
result when compared with (continuous choice) Brueckner-Hartree-Fock values. Arguments for the
dominance of short-range correlations in determining the nuclear matter saturation density are
presented. A further survey of the role of long-range correlations suggests that the inclusion of pionic
contributions to ring diagrams in nuclear matter leads to higher saturation densities than empirically
observed. A possible resolution of the nuclear matter saturation problem is suggested.
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[15–17]. A recent analysis of the (e; e0p) reaction on 208Pb density of nuclear matter. We recall that elastic electron
A correct description of the saturation properties of
nuclear matter has remained an unresolved issue for a
very long time. The Brueckner-Bethe-Goldstone expan-
sion [1] supplies a converged result for the energy per
particle in the relevant density range, for a given realistic
interaction, at the level of three hole-line contributions
[2,3]. Such calculations fail to reproduce the empirical
saturation properties which require a minimum in the
equation of state at a density corresponding to a Fermi
momentum, kF, of about 1:33 fm�1 with a binding energy
of about 16 MeV. The authors of Ref. [3] obtain for the
Argonne v14 interaction [4] a saturation density corre-
sponding to 1:565 fm�1 with about the correct amount of
binding. This corresponds to an overestimation of the
empirical density by about 60% but appears completely
consistent with corresponding variational calculations [5]
for the same interaction.

Several different remedies for this serious problem
have been proposed over the years. The intrinsic struc-
ture of the nucleon and its related strong coupling to the �
isobar inevitably require the consideration of three-body
(or more-body) forces. When three-body forces are con-
sidered in variational calculations it is possible to achieve
better saturation properties only when an ad hoc repulsive
short-range component of this three-body force is added
[6,7]. It has also been suggested that a relativistic treat-
ment of the nucleon in the medium using a Dirac-
Brueckner approach provides the necessary ingredients
for a better description of saturation [8–11].

All many-body methods developed for nuclear matter
have focused on a proper treatment of short-range corre-
lations (SRC) without the benefit of experimental infor-
mation on the influence of these correlations on the
properties of the nucleon in the medium. This influence
can now be clearly identified by considering recent results
from (e; e0p) reactions [12–14] and theoretical calcula-
tions of the nucleon spectral function in nuclear matter
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in a wide range of missing energies and for missing
momenta below 270 MeV=c yields information on the
occupation numbers of all the deeply bound proton orbi-
tals. These data indicate that all these orbitals are de-
pleted by the same amount of about 15% [18]. These
occupation numbers are associated with the orbits which
yield an accurate fit to the (e; e0p) cross section. The
properties of these occupation numbers suggest that the
main effect of the global depletion of these mean-field
orbitals is due to SRC. Indeed, the effect of the coupling
of hole states to low-lying collective excitations affects
only occupation numbers of states in the immediate vi-
cinity of the Fermi energy [19]. In addition, nuclear
matter momentum distributions display such an overall
global depletion due to short-range and tensor correla-
tions [17,20,21]. The latter results formed the basis of the
now corroborated prediction [22,23] for the occupation
numbers in 208Pb [18].

Most of this depleted single-particle (sp) strength is
located at energies more than 100 MeV above the Fermi
energy [17,20,22]. This appearance of strength at high
energy is another important aspect of the influence of
short-range and tensor correlations. Yet another character-
istic feature of these SRC is that this depletion of the sp
strength must be compensated by the admixture of a
corresponding number of particles with high-momentum
components. These high-momentum components have
not yet been unambiguously identified but are currently
studied experimentally [24]. Solid theoretical arguments
[25] and calculations clearly pinpoint this strength at high
excitation energy in the hole spectrum both for nuclear
matter [17] and finite nuclei [26]. Indeed, experiment
confirms that no substantial admixture of these high-
momentum components is observed in the vicinity of
the Fermi energy [27].

We now present an argument showing that SRC are the
dominant factor in determining the empirical saturation
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scattering from 208Pb [28] accurately determines the
value of the central charge density in this nucleus. By
multiplying this number by A=Z one obtains the rele-
vant central density of heavy nuclei, corresponding to
0:16 nucleons=fm3 or kF � 1:33 fm�1. Since the presence
of nucleons at the center of a heavy nucleus is confined to
s-wave nucleons, and, as discussed above, their depletion
is dominated by SRC, one may therefore conclude that the
same is true for the actual value of the empirical satu-
ration density of nuclear matter. While this argument is
particularly appropriate for the deeply bound 1s1=2 and
2s1=2 protons, it continues to hold to a large extent for the
3s1=2 protons which are depleted predominantly by short-
range effects (up to 15%) and by at most 10% due to long-
range correlations [13,29]. These considerations demon-
strate clearly that one may expect SRC to have a decisive
influence on the actual value of the nuclear matter satu-
ration density.

High-momentum components due to SRC also have a
considerable impact on the binding energy of nuclear
matter. This result can be inferred from the energy sum
rule [30]
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where � � �2k3F�=�3�
2� is the density. Equation (1) illus-

trates the link between the energy of the system and
the hole spectral function, Sh�k;!�. Results for the mo-
mentum distribution and true potential energy based on
the spectral function show that enhancements as large
as 200% for the kinetic and potential energy over the
mean-field values can be obtained for both nuclear matter
[20] and finite nuclei [26]. These large attractive con-
tributions to the potential energy of nuclear matter are
mainly from weighing the high-momentum compo-
nents in the spectral function with large negative energies
in Eq. (1). The location of these high-momentum com-
ponents as a function of energy is therefore an impor-
tant ingredient in the determination of the energy per
particle as a function of density. So far, the determination
of this location has relied only on quasiparticle properties
in the construction of the self-energy. A self-consistent
determination of the spectral function including the
location of these high-momentum components there-
fore includes the dominant physics of SRC in the de-
scription of nuclear matter and is consistent with the
experimental observations of the nucleon spectral func-
tion in nuclei.

Such a determination requires the solution of the ladder
equation for the effective interaction in the medium
hqj�JST‘‘0 �K;��jq0i � hqjVJST‘‘0 jq
0i �

‘00 0
dpp2hqjVJST‘‘00 jpi �gg

II
f �p;K;��hpj�JST‘00‘0 �K;��jq0i; (2)
where a notation with relative momenta p; q; q0 and the
conserved total momentum K has been used. The propa-
gator �ggIIf in Eq. (2) has been obtained by an angle-averag-
ing procedure of the noninteracting two-particle
propagator
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in order to allow a partial wave decomposition of the
ladder equation. Note that sp momenta k; k0 are used in
Eq. (3). In turn, the spectral functions are needed to
determine Eq. (3) and thereby the effective interaction
� through Eq. (2). They can be obtained from the imagi-
nary part of the sp propagator which solves the Dyson
equation

g�k;!� � g�0��k;!� � g�0��k;!���k;!�g�k;!�; (4)

where the self-energy � includes the contribution of SRC
through �, to complete the self-consistency loop.

The implementation of this self-consistency scheme is
numerically quite involved and has been attempted by
several groups [31–36]. In the present paper two different
approaches have been used to generate results for different
interactions. In the continuous scheme, a representation of
the imaginary part of the self-energy in terms of four
Gaussians is used to completely describe the sp propaga-
tor. The parameters of these Gaussians are then deter-
mined self-consistently [32] for the Reid potential [37] by
solving Eq. (2) with the convolution of spectral functions
in Eq. (3) as input, constructing the self-energy, and then
solving the Dyson equation (4). In the discrete scheme we
used a representation of the propagator in terms of three
discrete poles [33], which avoids a full continuum solu-
tion of Eq. (2). The latter approach is equivalent to a
continuous version as far as the energy per particle is
concerned, since it requires a reproduction of the relevant
energy-weighted moments of the hole and particle spec-
tral function [33]. This is substantiated by comparing the
results of this discrete scheme with the results of the
continuous self-consistency scheme used in Ref. [34] for
the Mongan-type separable interaction [38] and in
Ref. [36] for the separable Paris interaction [39]. We find
that the binding energies correspond to within 5% over
the relevant kF range around the minimum, and moreover
that the location of the minimum agrees to within 3%.

In Fig. 1 we report the saturation points obtained
within the discrete scheme of Ref. [33] for the updated
Reid potential (Reid93), the NijmI and NijmII inter-
actions [40], and the separable Paris interaction [39].
The results demonstrate an important and systematic
change of the saturation properties with respect to con-
tinuous choice Brueckner-Hartree-Fock (ccBHF) calcu-
lations, leading to about 4–6 MeV less binding, and
152501-2
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reduced values of the saturation density, closer to the
empirical one. Such a trend is entirely consistent with
the observations in Ref. [36] made for a separable NN
interaction and is now extended to more realistic (non-
separable) interactions.

The discrete scheme [33] could not be used with the
original Reid (Reid68) potential because of its slow decay
in momentum space, but some results are available in the
continuous scheme of Ref. [32]. In Fig. 1 the binding
energy is shown at two densities (kF � 1:33 and
1:45 fm�1); the error bars are an estimate of the remain-
ing uncertainty due to incomplete convergence and the
non-self-consistent treatment of some higher order par-
tial waves [32]. The results again seem to indicate a
substantial shift in the saturation density for the Reid68
potential, from the ccBHF value of about 1:6 fm�1, to a
value below 1:45 fm�1, without seriously underbinding
nuclear matter.

The present self-consistent treatment of SRC (scSRC)
differs in two main aspects from the ccBHF approach.
First, hole and particle lines are treated on an equal
footing, thereby ensuring thermodynamic consistency
[34]. Intermediate hole-hole propagation in the ladder
diagrams is included to all orders. This feature provides,
compared to ccBHF, a substantial repulsive effect in the
k < kF contribution to Eq. (1), and comes primarily from
an upward shift of the quasiparticle energy spectrum as a
result of including!< "F contributions to the imaginary
part of the self-energy. The effect increases with density
and is the dominant factor in the observed shift of the
saturation point. Secondly, the realistic spectral func-
tions, generated through Eqs. (2)–(4) and used in the
evaluation of the in-medium interaction � and self-
FIG. 1. Nuclear matter saturation points calculated with vari-
ous realistic NN interactions. The open symbols refer to con-
tinuous choice Brueckner-Hartree-Fock results. The filled
symbols refer to self-consistent results and represent saturation
points calculated in the discrete scheme, except for the Reid68
interaction where the binding energy at two densities is shown
in the continuous scheme.
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energy �, are in agreement with experimental informa-
tion obtained from (e; e0p) reactions. For the Reid93
interaction at kF � 1:37 fm�1 we find z � 0:74 for the
quasiparticle strength at the Fermi momentum, whereas
the hole strength for p � 0, integrated up to 100 MeV
missing energy, equals 83%; similar values are found for
the other interactions. The depletion of the quasiparticle
peaks is primarily important to suppress unrealistically
large pairing instabilities around normal density. The
improved treatment of the high-momentum components
does affect the binding energy, through the k > kF con-
tribution to Eq. (1). This feature, studied in [33], provides
a sizable attraction, but is smaller than the aforemen-
tioned repulsive effect.

The inclusion of hh propagation in scSRC also leads to
a somewhat stiffer equation of state than in ccBHF. A
recent analysis of the giant monopole resonance in heavy
nuclei [41] yields an experimental estimate Knm � 210�
30 MeV for the nuclear matter compression modulus,

Knm � k2F
d2E=A

dk2F

�������kF�kF;0 : (5)

At the saturation points in Fig. 1 we find ccBHF values
Knm � 154 MeV for Reid93 and Knm � 148 MeV for the
separable Paris interaction, which are enhanced to Knm �
177 MeV and Knm � 216 MeV, respectively, in our
scSRC calculation. These values agree reasonably well
with the experimental estimate. Note that reasonable
values for K imply that the Reid68 energies in Fig. 1
may still deviate by 1–1.5 MeV from numerically exact
scSRC values, as indicated by the error bars.

The present results indicate that a sophisticated treat-
ment of SRC lowers the ccBHF saturation densities,
bringing them closer to the empirical one. It remains to
be understood why apparently converged hole-line calcu-
lations [3] yield higher saturation densities. The three
hole-line terms obtained in Ref. [3] indicate reasonable
convergence properties compared to the two hole-line
contribution. One may therefore assume that these results
provide an accurate representation of the energy per par-
ticle of nuclear matter as a function of density for the case
of nonrelativistic nucleons and two-body forces. At this
point it is useful to identify an underlying assumption
when the nuclear matter problem is posed [32]. This
assumption asserts that the influence of long-range cor-
relations in finite nuclei and nuclear matter are commen-
surate. We would like to point out that this underlying
assumption is questionable. Three hole-line contributions
include a third-order ring diagram characteristic of long-
range correlations. The effect of long-range correlations
on nuclear saturation properties is sizable, as shown by
the results for three- and four-body ring diagrams calcu-
lated in Ref. [42] (see also Refs. [2,3]). The results
of Ref. [42] demonstrate that such ring-diagram terms
are dominated by attractive contributions involving
pion quantum numbers propagating around the rings and
152501-3
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increase in importance with increasing density. Such
long-range pion-exchange contributions to the binding
energy appear due to the possibility to coherently sample
the attractive interaction in a given ring diagram at mo-
menta q above 0:7 fm�1. This feature is related to mo-
mentum conservation in nuclear matter and is not
available in finite nuclei, in which no such collective
pion degrees of freedom are actually observed [43]. It
seems therefore reasonable to call into question the rele-
vance of these coherent long-range pion-exchange con-
tributions to the binding energy per particle since their
behavior is so markedly different in finite and infinite
systems. One may consider the salient difference of the
ratio of spin-longitudinal and spin-transverse response
functions in nuclear matter and finite nuclei as another
indication of the relevance of our suggestion [44]. We also
like to point out that experimental information of these
response functions [45–47] suggests no characteristic
enhancement of the (pionic) spin-longitudinal response
as expected on the basis of nuclear matter calculations.

Clearly, the assertion that long-range pion-exchange
contributions to the energy per particle need not be
considered in explaining nuclear saturation properties
needs to be further investigated. At this point it appears
that a fully self-consistent treatment of SRC has substan-
tially different saturation properties than a conventional
(continuous choice) Brueckner-Hartree-Fock treatment
and is capable of yielding saturation densities close to
the empirical one.
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