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Evaluation of Holonomic Quantum Computation: Adiabatic Versus Nonadiabatic
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Based on the analytical solution to the time-dependent Schrödinger equations, we evaluate the
holonomic quantum computation beyond the adiabatic limit. Besides providing rigorous confirmation of
the geometrical prediction of holonomies, the present dynamical resolution offers also a practical
means to study the nonadiabaticity induced effects for the universal qubit operations.
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resulting analytical dynamics solution not only naturally
recovers the geometrical consequence of holonomic

with�je�jgjihej (j�2;3). Here, 
 and’ are the control-
lable loop parameters denoting, respectively, the relative
Recently, a remarkable contribution termed as a holo-
nomic approach to quantum computation [1] has been
proposed and received increasing interest. Transcending
the traditional dynamical means the holonomic quantum
computation encodes and processes information in a de-
generated eigenspace of the governing Hamiltonian. The
intrinsic nontrivial global holonomies, either Abelian or
non-Abelian [2,3], are exploited by driving the system to
undergo appropriate loops in the parameter space adia-
batically. Besides suggesting an intriguing connection
between the gauge fields and the information processing,
such a geometrical means for quantum manipulation is
believed to have built-in fault-tolerant features [4,5] due
to its inherent stability against local perturbations.
Considerable attention has been addressed to this topic
recently and the all-geometrical implementation for uni-
versal quantum gates was proposed with optical schemes,
based on laser manipulation of ions confined in a Paul
trap [6] or neutral atoms in an optical resonator [7].

The very existence of the proposed holonomic quan-
tum computation relies strictly on adiabatic evolution pro-
cesses, in which the time-evolution ray and the curvature
of the ray space are naturally defined, and the associating
holonomy can thus be considered as a dynamically ir-
relevant (i.e., pure geometrical) property. However, the
dynamics processes in reality could not be ideally adia-
batic. The inevitable nonadiabaticity will alter the track of
the time-evolution ray and thus induce deviation from the
adiabatic consequences. The evaluation of such deviation
and the resulting errors in quantum computation is clearly
a dynamical problem that goes beyond the geometrical
exploration.

In this Letter, we shall employ the typical processes of
the optical scheme to exploit this subject. For each gate
operation, we will choose an appropriate loop of the
Hamiltonian in the parameter space, and then solve ana-
lytically the associating time-dependent Schrödinger
equation by virtue of the cranking representation or
gauge transformation approach. It will show that the
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transformation, including the simple Abelian phase factor
and the general non-Abelian operation, but also naturally
provides a practical mean for evaluating the nonadiaba-
ticity induced errors in qubit operations.

Consider the standard optical scheme explored recently
for the holonomic quantum computation [6,7], in which a
qubit is encoded in a four-level �-type trapped ion (or a
similar cavity atom). The three ground levels jgii (i �
1; 2; 3) are highly degenerated and each couples to the
excited state jei in a tunable manner. The states jg1i and
jg2i stand for the computational basis states j0i and j1i,
respectively, and jg3i is an ancillary level required for
gate operations. Such a system admits two dark states that
have no contributions from the excited state. The holo-
nomic quantum computation is realized here as the adia-
batic passage via the dark states as follows [6,7]. Through
changing the Rabi frequencies to drive the dark states
to undergo appropriate cyclic evolutions in an adiabatic
fashion, the universal single-qubit gate operations
(ei�j1ih1j and ei��y) and the controlled two-qubit phase
shift gate operation (ei�j11ih11j) can be generated from the
global geometry associated with the bundle of the eigen-
space of dark states [6]. Note that such a geometrically
established framework is inherently fragile. The time-
evolution, i.e., the time-dependent Schrödinger equation,
involves all four levels of the system. In other words, the
dynamical nonadiabaticity induces a certain coupling of
the dark states with other states, leading to two types of
error in quantum computing. One is the leakage of the
dynamical state out of the computational space and an-
other is the remaining deviation from the desired trans-
formation. In the following, we shall explore both of them
in detail for each individual gate operation.

Let us start with the single-qubit gate operation
ei�j1ih1j. Its dynamical evolution in the proposed optical
scheme is specified by the periodic Hamiltonian [6,7]

H�t� � �sin
��2e � �e2� ��cos
��3eei’ � �e3e�i’�;

(1)
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FIG. 1. The nonadiabatic effects on the single-qubit gate
ei�j1ih1j, reported in terms of (a) the fidelity parameter �
[Eq. (6)] and (b) the modified phase � [Eq. (7)], as functions
of �
; �=��. Note that this figure can also serve for the non-
adiabatic effects on the controlled two-qubit phase shift gate
[cf. comments following Eq. (19)].
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amplitude and the phase of Rabi frequency. Consider the
loop evolution in which ’��t rotates at a constant
frequency �, while 
 remains for the time being as a
fixed parameter. It is well known that, in the geometrical
exploration of adiabatic limit [2], the dark state, jD�t�i�
cos
jg2i�sin
ei�tjg3i, of the system acquires a net Berry
phase as jD�T�i�ei�jD�0�i with ��4�sin2
, after a
period T�2�=�. To the dynamical resolution beyond
the adiabatic limit, one should solve the Schrödinger
equation i@tj
�t�i�H�t�j
�t�i. The analytical solution
to the dynamics is as follows. We use the cranking repre-
sentation, in which the Hamiltonian of Eq. (1) can be
cranked as

H�t�	ei�t�33H0e�i�t�33 : (2)

The unitary transformation ei�t�33 can be viewed as an
element of the SU(3) group, and

H0��sin
��2e��e2���cos
��3e��e3�; (3)

which is time independent. Consequently, the dynamical
invariant of the system can be shown as

I�t��ei�t�33�H0���33�e�i�t�33 �H�t����33; (4)

which satisfies [8] dI�t�=dt�@I�t�=@t� i
I�t�;H�t���0.
The term ��33 in Eq. (4) accounts for an extra gauge
potential since H�t� depends on time explicitly. Now the
recurrent basis j �t�i of the system, differing from the
basic solution j
�t�i of the Schrödinger equation only by
a phase factor, can be obtained by solving the instanta-
neous eigensolutions of I�t�. The characteristic equation
turns out to be

x3���=��x2�x���=��sin2
�0: (5)

The eigenvalues of I�t� relate to its roots as Ei��xi; i�
�1, 0, 1. Note that the state jg1i is decoupled from the
others [cf. Equation (1)]. It is straightforward to show that
the recurrent basis j 0�t�i associated with the eigenvalue
E0 approaches to the dark state jD�t�i in the adiabatic
limit of �=�!0. However, the nonadiabatic j 0�t�i con-
tains in general also the excited state jei component.
Reported in Fig. 1(a) is the fidelity, defined here as

��
;�=��� jh 0�0�jD�0�ij
2�jh 0�T�jD�T�ij

2: (6)

Thus, �1��� measures the nonadiabaticity induced leak-
age error. Besides the leakage, the nonadiabatic evolution
will result in a modified phase factor in comparing with
its adiabatic counterpart. Instead of the net Berry phase,
the cyclic evolution here induces a total phase

��
;�=���
Z T

0
h 0�t�ji@t�H�t�j 0�t�idt�2�

E0

�
: (7)

This is the so-called Lewis-Riesenfeld phase by which

�t��ei� �t�. Note that in the adiabatic (�=�!0)
limit, one can obtain via the derivative of Eq. (5) that
E0=�	x0�=�!2sin2
, and Eq. (7) recovers the Berry
phase, �ad�4�sin2
. The nonadiabatically modified
phase ��
;�=�� is shown in Fig. 1(b).
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The validity of the above evaluation arguments is based
on a presumption that the initial state jD�0�i can be
generated from the computational basis jg2i and vice
versa. Explicitly, such processes can be accomplished by
the driven Hamiltonian Eq. (1) through changing the
parameter 
 adiabatically. Usually, the nonadiabatically
varied 
 shall also induce error for the quantum compu-
tation. In the following, we shall show that this error can
in principle be eliminated through a matching interaction
to compensate the induced gauge potential term.
Specifically, one can use the following Hamiltonian (set-
ting ’ � 0):

Htot�t� � H�t� �H0�t�; H0�t� � i _

�t���23 � �32�:

(8)

It follows that the dynamical invariant of the system
Htot�t� has now the form of I�t� � H�t�; thus, the above
state transformation can be processed without inducing
additional error. The compensating interaction H0�t� can
in principle be realized by using a microwave field, with
147902-2
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its intensity accurately being controlled through a deriva-
tive feedback process, to couple the two nearly degenerate
levels jg2i and jg3i.

Now turn to the evaluation of gate operation ei��y . Let
us explore the evolution generated by the Hamiltonian

H�t� ��sin

cos’��1e � �e1� � sin’��2e � �e2��

��cos
��3e � �e3�; (9)

with ’ 	 �t. It is known that the adiabatic cyclic evolu-
tion of the Hamiltonian generates a non-Abelian holon-
omy due to its degeneracy structure of the dark states. It
can be easily worked out from the formula of Ref. [3] that
the holonomic transformation is

uC � ei2� cos
Dy ; (10)

where Dy � i�jD2ihD1j � jD1ihD2j�. The two dark states,
jD1i � cos
jg1i � sin
jg3i and jD2i � jg2i, span the de-
generate space of the starting (ending) Hamiltonian. H�t�
of Eq. (9) possesses an su(4) Lie algebraic structure whose
dynamical resolution is usually very complicated.
Surprisingly, as we shall show in the following, this
time-dependent system can be solved exactly, leading
thus to the analytical evaluation of its adiabatic and non-
adiabatic properties.

Instead of the cranking method used earlier, we intro-
duce here the unitary gauge transformation [9], j
g�t�i 	
G�1�t�j
�t�i, with G�t� � e��t��12��21�. The covariant
Schrödinger equation can be obtained as i@tj
g�t�i �
Hgj
g�t�i, in which the gauged Hamiltonian is given by

Hg � G�1HG� iG�1@G=@t

� �sin
��1e � �e1� ��cos
��3e � �e3�

� i���12 � �21�: (11)

As it is time independent, the basic solutions fj
g
n�t�ig to

the above covariant equation can be easily obtained. The
corresponding eigenvalues are summarized as follows:

E1;2 � �2�1=2 ���
1�
����������������������������������������
1� 4��=��2 cos2 �



q
�1=2;

E3;4 � �2�1=2 ���
1�
����������������������������������������
1� 4��=��2 cos2 �



q
�1=2;

(12)

in which ��� �
�������������������
�2 � �2

p
, and cos �

 � �cos
�=


1� ��=��2�. With the analytical solutions of fj
g
n�t�ig,

the dynamical basis of Eq. (9) can be directly obtained as
j
n�t�i � G�t�j
g

n�t�i � e�iEntG�t�j
n�0�i, from which
one can see that En has the natural implication related
to the total phase. The evolution operator generated by the
Hamiltonian [Eq. (9)] can then be obtained accordingly
via U�t� �

P
n j
n�t�ih
n�0�j.

Before presenting the nonadiabaticity induced effects,
let us outline the asymptotic behavior of the evolution in
the adiabatic limit. It follows that lim�=�!0 E1;2=� �
� cos
. The associating phase-equipped dynamical basis
states, resulted as the limits of corresponding equations,
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assume the form (noting that ’ 	 �t)

j
ad
1;2�t�i � 2�1=2e�i’ cos

�cos
 cos’� i sin’�jg1i

� �cos
 sin’� i cos’�jg2i � sin
jg3i�: (13)

Note here that j
ad
1;2�0�i � �jD1i � ijD2i�=

���
2

p
. One can

verify that j
ad
1 �t�i and j
ad

2 �t�i in Eq. (13) are the
instantaneous eigenstates associated with the degener-
ated eigenvalue 0 of the Hamiltonian Eq. (9), and the
equipped phases are just the Berry phases accordingly.
Thus, the cyclic evolution restricted to the space spanned
by these two degenerated states, assuming the form of

Uad�T� � e�i2� cos
j
ad
1 �0�ih


ad
1 �0�j

� ei2� cos
j
ad
2 �0�ih


ad
2 �0�j;

(14)

is purely geometrical. It is easily recognized that Uad�T�,
obtained here as the limiting case of the dynamical solu-
tion, is identical to the uC [Eq. (10)] obtained from
holonomic transformation. Thus, the above discussion
has also provided an example of dynamical verification
of the celebrated geometric prediction of non-Abelian
holonomy [3].

We reemphasize here that the analytical solutions to the
general, nonadiabatic basis set fj
n�t�i; n � 1; . . . ; 4g can
be obtained for this system [Eq. (9)], and Eq. (13) are just
the adiabatic limits of two corresponding equations. The
fidelity �, by which 1� � measures the nonadiabaticity
induced leakage out of the computational space, can now
be defined by the projection [cf. Equation (6)]

��
; �=�� �
X2
i�1

jhDijU�T�j
�0�ij2: (15)

Figure 2 depicts in detail the dark state population trans-
fer (the solid curves) from the initial state j
�0�i � jg2i
as a function of f
; �=�g, and the fidelity of the non-
adiabatic evolution (the dash curves).

Further, to have the required transform between the
computational basis jg1i and the dark state jD1i, one
needs to let the parameter 
 in Eq. (9) tunable at ’ � 0.
Similar to the former case, we have here [cf. Equation (8)]

Htot�t� �H�t��H0�t�; H0�t� � i _

�t���13 ��31�: (16)

Again, the added H0 is to compensate the varying 

induced gauge potential.

We are now in the position to investigate the dynamical
consequence of a controlled two-qubit phase shift gate,
ei�j11ih11j. In contact to the geometrical implementation
proposed in Ref. [6], the proposed scheme there exploited
two-color biexciton laser manipulation on systems such
as trapped ions [10]. Briefly, the two-qubit manipulation
is realized by applying two bichromatic laser pairs that
drive resonantly and cooperatively with the two-photon/
biexciton transitions, jg2g2i $ jeei and jg3g3i $ jeei,
respectively. However, each laser individually is oper-
ated in the off-resonant regime with respect to a single
147902-3



FIG. 2. The nonadiabatic effects on the single-qubit gate
ei��y in terms of the dark state population transfer (solid
curves) for various values of nonadiabaticity: �=� � 0:01,
0.2, 0.5, and 0.8 for (a), (b), (c), and (d), respectively. The
initial state assumes jD2i. Included are also the fidelity �
[Eq. (15)] parameter (dash curves).
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excitation. The system can be described, under a well-
defined condition, by the Hamiltonian [6]

Heff � ��eff
1 �ei2’1 jeeihg2g2j � H:c:�

��eff
2 �ei2’2 jeeihg3g3j � H:c:�; (17)

where the relative intensity of the effective Rabi frequen-
cies tan
 � ��eff

1 =�
eff
2 and the phase difference ’=2 �

’1 � ’2 are tunable. One can see that the basis states
jg1g1i, jg1g2i, and jg2g1i are decoupled from the evolu-
tion, while jg2g2i that serves as the code j11i evolves in
the closed subspace spanned by {jg2g2i; jg3g3i; jeeig.
Introducing the su(3) generators explicitly,

Ae2 � ei2’1 jeeihg2g2j; Ae3 � ei2’1 jeeihg3g3j;

A23 � jg2g2ihg3g3j; Ay
 ! � A! ;

(18)

Eq. (17) can then be recast as

Heff � 
��eff
1 �2 � ��eff

2 �2�1=2
sin
�A2e � Ae2�

� cos
�A3eei’ � Ae3e�i’��: (19)

Obviously, this Hamiltonian possesses an su(3) algebraic
structure isomorphic to that of Eq. (1). Thus, all the
discussions therein and Fig. 1 as well, provided � �

��eff

1 �2 � ��eff
2 �2�1=2, also hold for the present system.

In conclusion, we have evaluated the holonomic quan-
tum computation beyond adiabatic limitation. The non-
adiabaticity induced effects in terms of the leakage error
and the modified phase are evaluated by exploring the
typical optical process and solving exactly the time-
dependent Schrödinger equation for each qubit operation.
In a realistic scheme of geometric/holonomic quantum
computation, the evaluation of imperfections is neces-
sary, particularly since a direct extension of the adiabatic
147902-4
scenario to the nonadiabatic situation is not attainable
[11]. Note that the nonadiabatic effects on the Abelian
holonomy were exploited before in the context of general
quantum dynamics [12]. The present work constitutes the
first exploration of the nonadiabatic effects in the context
of quantum computation, covering over both the Abelian
holonomy and its much more complicated non-Abelian
counterpart. For the two-qubit operation, we adopt a
simplified model [Eq. (17)] in which other competing
second-order optical processes involved in the single
trapped ion are neglected. The resulting two-qubit opera-
tion is shown isomorphic to the Abelian holonomic reali-
zation of single-qubit gate ei�j1ih1j, and its dynamical
consequences are therefore also studied accordingly. The
inclusion of other competing processes, such as two-
photon (Rayleigh) scattering that may interfere with the
biexcitonic dynamics, and their effects on the holonomic
realization of the two-qubit gate will be studied in the
future.

This work is supported by the Postdoctoral Science
Foundation, the special funds for Major State Basic Re-
search Project No. G001CB3095, the NNSF No. 10175029
of China, and the RGC of Hong Kong Government.
[1] P. Zanardi and M. Rasetti, Phys. Lett. A 264, 94 (1999);
J. Pachos, P. Zanardi, and M. Rasetti, Phys. Rev. A 61,
010305(R) (2000); J. Pachos and S. Chountasis, Phys.
Rev. A 62, 052318 (2000); J. Pachos and P. Zanardi,
Int. J. Mod. Phys. B 15, 1257 (2001).

[2] M.V. Berry, Proc. R. Soc. London A 392, 45 (1984);
B. Simon, Phys. Rev. Lett. 51, 2167 (1983).

[3] F. Wilczek and A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
[4] J. Preskill, in Introduction to Quantum Computation and

Information, edited by Hoi-Kwong Lo, S. Popescu, and
T. Spiller (World Scientific, Singapore, 1999).

[5] J. A. Jones,V. Vedral, A. Ekert, and G. Castagnoli, Nature
(London) 403, 869 (2000); A. Ekert et al., J. Mod.
Opt. 47, 2501 (2000); G. Falci, R. Fazio, G. M. Palma,
J. Siewert, and V. Vedral, Nature (London) 407, 355
(2000).

[6] L. M. Duan, J. I. Cirac, and P. Zoller, Science 292, 1695
(2001).

[7] A. Recati, T. Calarco, P. Zanardi, J. I. Cirac, and P. Zoller,
Phys. Rev. A 66, 032309 (2002).

[8] H. R. Lewis, Jr., Phys. Rev. Lett. 18, 510 (1967).
[9] S. J. Wang, F. L. Li, and A. Weiguny, Phys. Lett. A 180,

189 (1993); S. J. Wang et al. (unpublished).
[10] K. Molmer and A. Sorensen, Phys. Rev. Lett. 82, 1835

(1999).
[11] L. X. Cen, X. Q. Li, and Y. J. Yan, quant-ph/0208119.
[12] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593

(1987); S. J. Wang, Phys. Rev. A 42, 5107 (1990); S. L.
Zhu and Z. D. Wang, Phys. Rev. B 61, 1142 (2000).
147902-4


