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Nonballistic Spin-Field-Effect Transistor

John Schliemann, J. Carlos Egues,* and Daniel Loss
Department of Physics and Astronomy, University of Basel, CH-4056 Basel, Switzerland

(Received 26 November 2002; published 8 April 2003)
146801-1
We propose a spin-field-effect transistor based on spin-orbit coupling of both the Rashba and the
Dresselhaus types. Different from earlier proposals, spin transport through our device is tolerant against
spin-independent scattering processes. Hence the requirement of strictly ballistic transport can be
relaxed. This follows from a unique interplay between the Dresselhaus and the Rashba coupling; these
can be tuned to have equal strengths, leading to k-independent eigenspinors even in two dimensions. We
discuss two-dimensional devices as well as quantum wires. In the latter, our setup presents strictly
parabolic dispersions which avoids complications from anticrossings of different bands.
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where the coefficient � is determined by the semiconduc-
which is laterally contacted by two spin-polarized con-
tacts. In the vertical direction across the well, an electric
In the recent years research in semiconductor physics
has been focused on the emerging field of spintronics.
This key word refers to the variety of efforts to use the
electron spin rather than, or in combination with, its
charge for information processing or, even more ambi-
tiously, quantum information processing [1]. Among the
most prominent device proposals is the spin-field-effect
transistor (FET) due to Datta and Das [2]. This proposal
uses the Rashba spin-orbit (s.o.) coupling to perform
controlled rotations of spins of electrons passing through
an FET-type device. This particular spin-orbit interaction
is due to the inversion-asymmetry of the confining po-
tential and is of the form [3]

H R �
�
�h
�px�y � py�x�; (1)

where ~pp is the momentum of the electron confined in a
two-dimensional geometry, and ~�� the vector of Pauli
matrices. The coefficient � is tunable in strength by the
external gate of the FET. Because of the dependence on
the momentum, the Rashba spin-orbit coupling can be
viewed as a wave vector-dependent Zeeman field which
can change drastically if the electron is scattered into a
different momentum state. Therefore, such scattering
events readily randomize the electron spin, thus limiting
the range of operation of the Datta-Das spin-FET to the
regime of ballistic transport where such processes do not
occur.

In the present work we propose a modified version of
the spin-FET in which the electrons are not only subject
to spin-orbit interaction of the Rashba but also of the
Dresselhaus type [4]. The latter is present in semiconduc-
tors lacking bulk inversion symmetry. When restricted to
a two-dimensional semiconductor nanostructure with ap-
propriate growth geometry, this coupling is of the form
[5,6]

HD �
�
�h
�px�

x � py�
y�; (2)
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tor material and the geometry of the sample. Below we
show that our proposed device is robust against spin-
independent scattering and hence can also operate in a
nonballistic (or diffusive) regime. This unique feature
follows from the possibility of tuning the Rashba (via
proper gating) and the Dresselhaus terms so that they have
equal strengths � � �. In this case, we show quite
generally below that the electron spinor is k indepen-
dent in two dimensions—even in the presence of (spin-
independent) scatterers.

Tuned Rashba and Dresselhaus terms.—Consider the
Hamiltonian H � ~pp2=2m� V�~rr� �H R �HD, where
m is the effective mass of the semiconductor and V�~rr� an
arbitrary scalar potential. For � � �� the operator � �
��x � �y�=

���
2

p
provides an additional conserved quantity,

and a general eigenstate of H and � reads (for � � ��)

 ��~rr� �
1���
2

p

�
1

�ei�=4

�
’�~rr�e�i

��
2

p
�m�x�y�= �h2 ; (3)

where the function ’�~rr� fulfills the usual spin-
independent Schrödinger equation

�
�

�h2

2m
r2 � V�~rr�

�
’�~rr� �

�
"�

2�2m

�h2

�
’�~rr�; (4)

and " is the energy eigenvalue of the wave function  ��~rr�
with � � �1. Since Eq. (4) is independent of the quan-
tum number � all eigenstates are generally twofold de-
generate. Such two degenerate states differing in � are
related by time reversal. Note that the eigenvalue problem
(4) is invariant under a formal time reversal, and the
function ’�~rr� can be taken to be real. The potential V�~rr�
can provide further confinement of the quantum well into
a quantum wire (see below) or a quantum dot; it can also
possibly describe nonmagnetic scatterers due to imper-
fections or impurities.

A robust two-dimensional spin-FET.—We consider an
FET setup given by a two-dimensional quantum well
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FIG. 1. Schematic of the spin-FET setup using quantum point
contacts (QPC) to source and drain. The pairs of QPCs are
separated by barriers to avoid cross talk.
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field tuning the Rashba coefficient � is provided by a gate.
The spin-polarized leads can be realized by ferromag-
netic metals or by ferromagnetic semiconductors. The
latter version appears to be preferable with respect to
the spin injection properties of the interfaces [1].

Within the two-dimensional channel the Hamiltonian
is H � ~pp2=2m�H R �HD whose eigenstates are

 �
~kk
�~rr� �

1���
2

p

�
1

�ei�� ~kk�

�
ei~kk ~rr

2�
; (5)

with �� ~kk� � arg
��ky � �kx � i��kx � �ky�� and
eigenenergies

"� ~kk� �
�h2 ~kk2

2m
�

���������������������������������������������������������������
��ky � �kx�

2 � ��kx � �ky�
2

q
: (6)

For general � and � the spinor in the eigenstates (5)
depends via �� ~kk� on the wave vector, and the dispersion
(6) is nonparabolic. However, as described above, the case
� � � is particular. Here the spin state of the wave
functions is independent of the wave vector, and the
dispersion is perfectly parabolic. The first observation is
crucial for our device proposal.

Device operation.—The ‘‘off state’’ of our transistor
corresponds to a gate bias such that the Rashba and the
Dresselhaus coupling strengths are unequal, i.e., � � �.
In this case, the spinor of an injected electron is k depen-
dent, Eq. (5), and hence becomes randomized due to
momentum scattering. For strong enough spin relaxation,
the drain current is that of an unpolarized beam. The
predominant spin-dephasing mechanism in spin transis-
tors is that of the Dyakonov-Perel type [7,8], due to the
largest of the two spin-orbit terms [9]. The ‘‘on state’’ of
our device operates with a gate bias for which � � �.
Here an injected electron with arbitrary momentum and
in one of the k-independent spin states �1;� exp�i�=4��
traverses the transistor channel with its spin state
unchanged. The current at the drain would be the same
as the injected one, assuming that the ferromagnetic
source and drain have parallel polarizations. Note that
spin-independent scattering events (provided by lattice
imperfections, phonons, and nonmagnetic impurities)
cannot change the spin state of the traversing electron.
Moreover, as it will become clear from the discussion
below, further device setups can be thought of as switch-
ing between the two points � � �� and/or using differ-
ent combinations of magnetic polarizations in the
contacts.

Absence of spin relaxation.—The Elliot-Yafet spin-flip
mechanism is completely suppressed for � � � (on state
of our device) since the spinor is k independent in this
case. In addition, the Rashba-Dresselhaus rotation axis is
fixed for equal couplings, and hence no Dyakonov-Perel
spin relaxation is operative either. This can be seen from
the general stationary solution (3): particles injected into
the device with spin components in one of the eigenspinor
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states �1;� exp�i�=4�� do not get altered at all (up to an
unimportant global phase). Moreover, inspection of
Eq. (3) shows that particles injected in a general spin
state do not undergo a randomization of their spin but a
controlled rotation around the �1; 1; 0� axis by an angle �
given by � � 2

���
2

p
�m�ax � ay�= �h2, where ~aa connects the

locations where the particles are injected and detected,
respectively. Therefore, if the locations of injection and
detection are defined with sufficient precision, an electron
injected in a general spin state will not suffer a random-
ization of its spin. However, uncertainties in those loca-
tions will translate to an uncertainty in the rotation angle.
A way to avoid this problem is to inject electrons in the
eigenspinor states �1;� exp�i�=4�� (as discussed above)
where the rotation has only a trivial effect, or to inject
and detect electrons in a general spin state through quan-
tum point contacts leading to well-defined distance vector
~aa. To enable a higher efficiency of the device, arrays of
such quantum point contact pairs, separated by barriers,
can be used in parallel as shown schematically in Fig. 1.

A similar finding was obtained numerically by Kiselev
and Kim [10] who studied an effective spin model of the
form ~HH � HR �HD, where the momentum ~pp�t� �
m _~rr~rr is a classical variable (not an operator) whose depen-
dence on time t is generated by a Markovian process.
The general time evolution operator reads U�t� �
T expf�i

R
t
0 dt

0 ~HH 
 ~pp�t0��= �hg, where T denotes the
time-ordering symbol. For � � � the time ordering be-
comes trivial, and U�t� reads, up to a global phase,

U�t� � 1 cos
�
�� ~aa�
2

�
�i
�x � �y���

2
p sin

�
�� ~aa�
2

�
; (7)

with, as above, �� ~aa� � 2
���
2

p
�m�ax � ay�= �h

2 and ~aa �
~rr�t� � ~rr�0�. Note that this finding is independent of
whether or not the energy ~HH 
 ~pp�t�� is conserved along
the path ~pp�t�, as it was assumed in Ref. [10]. Thus, also
this simplified effective spin model (with the orbital
degrees of freedom treated classically) leads to the same
controlled spin rotation as the full quantum mechani-
cal solution (3). The above findings are in contrast with
146801-2



FIG. 2. Quantum wire dispersions "�k� in the presence of
both Rashba and Dresselhaus s.o. interactions. For equal s.o.
strengths � � � (a) the dispersions are parabolic with no
anticrossings. For differing coupling strengths � � � (b) the
bands are nonparabolic and avoided crossings occur.

P H Y S I C A L R E V I E W L E T T E R S week ending
11 APRIL 2003VOLUME 90, NUMBER 14
earlier assertions where a randomization of the spin was
predicted to occur even for � � � [11], or at least for
� � � and a general spin state of the injected electron
differing from �1;� exp�i�=4�� [12]. These conclusions
are due to the weak-coupling treatment performed in
[11,12] and become invalid in the presence of the addi-
tional conserved quantity � arising at � � �.

A quantitative description of the transport in the
on state of our device should include possible spin-
independent scatterers in the potential V�~rr� of Eq. (4).
This equation describes the orbital part of the single-
particle eigenstates whose spin part is independent of the
momentum for � � �. Solutions to this equation can be
matched with wave functions in the leads according to the
appropriate boundary conditions in the presence of spin-
orbit coupling [13,14]. Transmission coefficients can then
be determined from the stationary solutions.

Ballistic regime.—In the strictly ballistic case [V�~rr� �
0] and for source and drain with parallel polariza-
tions chosen along either of the spinor directions
�1;� exp�i�=4��, we find the transmission amplitude

T� �
e�ika�i

��
2

p
�m2a= �h

2
�4q m2

m1
k�

�m2

m1
k� q�2e�iqa � �m2

m1
k� q�2eiqa

; (8)

for an electron injected at energy " and wave vector ~kk �
k~eey. In (8) a is the length of s.o. active region, m1, m2 are
the band masses in the contacts and the two-dimensional
channel, respectively, and q �

����������������������������������
2m2�"� V0�= �h2

p
with V0

being a possible band offset between the contacts and
the FET channel (also including a contribution from s.o.
coupling). From the above expression one can find the
conductance using Landauer’s formula. Concerning the
phase of transmitted electrons, one finds T�=T� �
exp�i2

���
2

p
�m2a= �h

2�. As discussed above, this phase factor
is also obvious from the general form of eigenstates (3)
and corresponds to a controlled rotation of the spin of the
injected particle around the �1; 1; 0� direction. The rota-
tion angle is, up to a factor of

���
2

p
, due to the presence of

both Rashba and Dresselhaus coupling, the same as the
one in the original proposal by Datta and Das [2]. Note,
however, that here the spin part of the wave functions is
independent of the wave vector. Moreover, according to
the general form of eigenstates given by Eq. (3), the same
phase factor occurs if spin-independent scatterers encom-
passed in the potential V�~rr� are included. Therefore, as
discussed above, the range of operation of our device is
not limited to the strictly ballistic regime.

Magnitudes of � and �.—The largest values for �
observed in III-V semiconductors are of the order of a
few 0:1 eV �A [15–20]. An estimate for the Dresselhaus
coefficient in a confined geometry is obtained from � �
�hk2zi, where hk2zi is the expectation value of the square
wave-vector component in the growth direction. A typical
value for the coefficient � is � � 25 eV �A3 [21–23]. For
an infinite well with width w we find hk2zi � ��=w�2,
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which yields � � 0:09 eV �A for w � 50 �A. Hence there
should be no principle difficulty to achieve the situation
� � � even in comparatively narrow wells. Note also that
small deviations from the case � � �, i.e., � � �� "
with j"=�j � 1, lead (using Fermi’s golden rule) to spin
scattering rates which are quadratic in ". Thus, spin
dephasing due to spin-orbit coupling is completely sup-
pressed in first order in ". This is in accordance with the
results of Ref. [10] studying an effective time-dependent
Hamiltonian where the inverse dephasing time has a
minimum equal to zero at � � � and is differentiable
around this point.

Quantum wire with spin-orbit coupled bands.—We
now consider a quantum wire formed by an additional
confining potential V�x� along the x direction. For � � �
single-particle wave functions are of the form (3) with
’n�~rr� � $n�x� exp�i�k�

���
2

p
�m= �h2�y�, where $n�x� obeys

the usual Schrödinger equation for the transverse variable
x with quantized eigenvalues ~""n, and n labels the energy
levels. The single-particle eigenenergies are then "�n �k� �
~""n � � �h2=2m��k�

���
2

p
�m= �h2�2 � 2�2m= �h2. Note that,

similar to the two-dimensional case discussed earlier,
the wire energy dispersions here are also parabolic—for
any strength of the � � � coupling. In addition, as we
discuss below, there are no avoided crossings in the energy
dispersions. These results are significantly different from
the usual case of a quantum wire with only the Rashba
s.o. interaction [24–26]; there the bands are highly non-
parabolic and anticross for strong Rashba couplings.

Figure 2 illustrates the wire dispersions for a two-band
model. Note in Fig. 2(a) the features mentioned above for
the case with tuned couplings: parabolic dispersions with
no anticrossings. For differing coupling constants � � �,
the bands are nonparabolic and display avoided crossings.
The contrasting features of the � � � and � � � cases
are crucial for spin injection across a no-s:o:=s:o: active
interface.

Spin injection in quasi-1D channels.—Strong Rashba
s.o. interaction can greatly affect the spin conductance
of wires [25] and even suppress spin injection [26]. The
wires we consider here, with tuned s.o. couplings � � �,
should not present any obstacle to spin injection since
the bands are parabolic with no avoided crossings. The
146801-3
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problem with tuned couplings is similar to that of a
quantum wire with uncoupled s.o. bands, where spin
injection is always possible in the ballistic regime [2].

We can also consider a spin-FET setup with a wire as
the connecting channel between the source and the drain.
Since the spin part of the wire eigenstates are wave-
vector dependent for � � �, this quasi-1D spin-FET
operates similarly to the nonballistic two-dimensional
one discussed earlier. That is, elastic and/or inelastic
scattering processes changing the wave vector also ran-
domize the spin state of transmitted electrons (off state)
for wires with many bands. These effects are absent for
� � � and the spin state is preserved (on state).

Influences beyond the effective Hamiltonian.—Our
analysis assumes that the effects of spin-orbit interaction
are entirely described by the contributions (1) and (2) to
the Hamiltonian. In a realistic semiconductor system
there are additional corrections to these dominant terms.
It is instructive to consider the influence of possible non-
parabolicity in the band structure described by a contri-
bution to the Hamiltonian of higher order in the
momentum. For instance, as it was argued theoretically
[21] and confirmed experimentally [18], particularly large
values of � are typically accompanied by a sizable
quartic nonparabolicity of the form � ~pp2�2. This is due to
the similar dependence of both terms on the band gap.
However, also in this case � is still a conserved quantity
at � � �, and the Hamiltonian is invariant under time
reversal if only even powers of the momentum occur. In
particular, if �1; exp�i�=4����~rr� solves the stationary
Schrödinger equation, so does the orthogonal state
�1;� exp�i�=4�����~rr� with the same energy, thus leading
to the same general degeneracy pattern as in the parabolic
case. Moreover, transmission amplitudes for such eigen-
spinor states are as before related by complex conju-
gation. Thus, for injection into eigenspinor states
�1;� exp�i�=4�� the device operation is completely un-
altered. For injection into linear combinations of them
the same controlled rotation around the �1; 1; 0� axis
occurs. The rotation angle, however, is more difficult to
determine since an elegant transformation as described in
Eqs. (3) and (4) does not seem to exist. Note that the result
for the spin evolution operator (7) obtained within the
classical approximation remains the same if additional
spin-independent terms are included, and the rotation
angle is again given by the distance ~aa. In summary, in
situations where a sizable quartic term is present and the
classical approximation to the orbital motion appears
problematic, injection in directions close to the eigen-
spinor directions is favorable in order to ensure good
device operation. Thus, even with such corrections like
nonparabolicity being included, our spin-transistor
proposal—which benefits from a unique ‘‘cancella-
tion’’ of the Rashba and the Dresselhaus terms for tuned
couplings—should provide a substantial increase in per-
146801-4
formance and stability of a spin-FET device as compared
with the original proposal [2]. We stress that this cancel-
lation occurs for both signs in the relation � � ��.
Therefore further devices can be envisioned switching
between these two points and/or using different combi-
nations of magnetic polarizations in the contacts.
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