
P H Y S I C A L R E V I E W L E T T E R S week ending
11 APRIL 2003VOLUME 90, NUMBER 14
One-Dimensional Confinement and Enhanced Jahn-Teller Instability in LaVO3
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Ordering and quantum fluctuations of orbital degrees of freedom are studied theoretically for LaVO3

in the spin-C-type antiferromagnetic state. The effective Hamiltonian for the orbital pseudospin shows
strong one-dimensional anisotropy due to the negative interference among various exchange processes.
This significantly enhances the instability toward lattice distortions for the realistic estimate of the
Jahn-Teller coupling by first-principle LDA �U calculations, instead of favoring the orbital singlet
formation. This explains well the experimental results on the anisotropic optical spectra as well as the
proximity of the two transition temperatures for spin and orbital orderings.
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FIG. 1. Temperature dependence of the spectral weight in
LaVO3. Filled and open circles represent the data along the c
axis Ic and within the ab plane Iab, respectively. The inset
shows the optical conductivity. The solid curves denote the data
along the c axis for T � 10, 142, and 293 K from top to bottom,
respectively. The data within the ab plane are almost tem-
ductivity up to the isosbestic (equal-absorption) point perature independent which are shown by the dashed curves.
Orbital degrees of freedom are playing key roles in
magnetic and charge transport properties of transition
metal oxides [1]. Especially, it has been recognized
that, in these strongly correlated systems, spatial shapes
of orbitals can give rise to an anisotropic electronic state
even in the three-dimensional (3D) perovskite structure
[2,3]. There the spin ordering (SO) and orbital ordering
(OO) are determined self-consistently [4].

Perovskite vanadium oxides, AVO3 (A is rare-earth
element), are typical t2g electron systems which show
this interplay between orbital and spin degrees of freedom
[5–10]. Both magnetic and orbital transition tempera-
tures, TN and To, respectively, change systematically
according to the ionic radius of the A atom [11], which
controls the bandwidth through the tilting of VO6 octa-
hedra. For smaller ionic radii (smaller bandwidth) such as
A � Y, To for OO of G-type (3D staggered) is much
higher than TN for SO of C-type (rod-type) [10,11]. As
the ionic radius increases (the bandwidth increases), To

decreases while TN increases, and finally they cross be-
tween A � Pr and Ce [11]. In LaVO3, the SO occurs at
TN ’ 143 K first, and at a few degrees below TN the OO
takes place [12]. A remarkable aspect here is its proximity
of TN and To, which is also observed for all the com-
pounds with TN > To, i.e., CeVO3 [11] and La1�xSrxVO3

(x < 0:17) [12]. Therefore, in LaVO3, the magnetic corre-
lation appears to develop primarily and to induce the
orbital transition immediately once the SO sets in.

Another interesting aspect of LaVO3 is the large an-
isotropy in the electronic state, which has recently been
explored by the optical spectra [13]. Figure 1 shows the
temperature dependence of the spectral weights, Ic along
the c direction and Iab within the ab plane, which is
obtained from the data in Ref. [13]. Here we define
the spectral weight as an integration of the optical con-
0031-9007=03=90(14)=146602(4)$20.00 
at 2.8 eV, namely, I� � ��2m0�=��e
2n�	

R
2:8 eV
0 ���!� d!

(� � c or ab), where m0 and n are the free electron
mass and the density of V atoms, respectively. The most
striking feature is the temperature dependence. Ic grows
rapidly below TN while Iab is almost temperature inde-
pendent. Therefore the temperature dependence is almost
1D although the ratio Ic=Iab 
 2 is not so large.

Compared with eg systems, the Jahn-Teller (JT)
coupling in t2g systems is expected to be weak, and
the quantum fluctuation and/or the singlet formation of
the orbital degrees of freedom is a keen issue. Recently,
Khaliullin et al. claimed that orbital singlet correlation
along the c axis is the driving force to realize the ferro-
magnetic spin exchange in the C-type antiferromagnetic
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(AF) phase in LaVO3 [14]. On the other hand, the C-type
SO state with the G-type OO has been obtained by the
mean-field theory [15] and the first-principle calculation
[16] which are justified for rather weakly correlated cases
and do not take account of quantum fluctuations seriously.
There, the AF interactions within the ab plane con-
comitant with a single occupation of xy orbitals play a
key role to stabilize the SO and OO. Hence, these two
pictures are quite different. Since there are competing
interactions with the orbital quantum nature, such as JT
coupling and 3D orbital exchange couplings, it is highly
nontrivial to what extent the quantum fluctuations are
important under the realistic situations; nevertheless,
the quantitative study on this issue has been missing.

In this Letter, we study ordering and fluctuations of
orbital degrees of freedom in the C-type AF phase in
LaVO3. An effective orbital model including the JT and
the relativistic spin-orbit couplings is derived using the
parameters obtained by first-principle LDA �U calcula-
tions and the optical experiments.We show that the model
exhibits a strong 1D anisotropy which explains well the
experimental results for the optical spectra and the prox-
imity of To to TN. It is concluded that the enhanced JT
instability due to the 1D confinement dominates the orbi-
tal singlet formation in LaVO3.

Now we derive the effective orbital model. We start
from the strong-coupling limit of the Hubbard model
with threefold orbital degeneracy for the t2g orbitals [2].
The system contains two d electrons at each Vatom which
form the high-spin S � 1 state due to the Hund’s-rule
coupling. To focus on the orbital sector in this spin-orbital
coupled Hamiltonian, we assume the C-type SO. This is a
reasonable approximation because the spin S � 1 has less
quantum nature compared to S � 1=2 and the C-type SO
is obtained by the mean-field calculation [15] and the
first-principle calculation [16] as mentioned above. At
the same time, we assume that the xy orbital is singly
occupied at each Vatom, which drives the AF coupling in
the ab plane [15,16]. Then the second electron goes to
either yz or zx orbital. We assign a pseudospin state �z �
�1=2 for the occupancy of these two orbitals [14].
Finally, our total Hamiltonian is written as H �
H c

orb �H ab
orb �H JT �H LS, each term of which is

described below.
The orbital exchange term for the c direction is

H c
orb �

X

hiji

Jc� ~��i � ~��j � 1=4�; (1)

while that within the ab plane is

H ab
orb �

X

hiji

�J�ab�
z
i�

z
j � J�ab=4 � Jxyab=4�: (2)

Here the summations are taken for nearest-neighbor
pairs. The coupling constants are given by

Jc � 4t2=�U0 � JH�; (3)
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J�ab �
2t2

3�U0 � JH�
�

4t2

3�U0 � 2JH�
�

t2

U� 2JH
�

t2

U
; (4)

Jxyab � 4t2=�U� 2JH� � 4t2=U; (5)

where U, U0, and JH are the intraorbital, the interorbital
Coulomb interaction, and the Hund’s-rule coupling, re-
spectively. Neglecting the small tilting of VO6 octahedra
in LaVO3, the transfer integral t is taken to be diagonal
which strongly depends on the direction, for instance,
tyzij � tzxij � t and otherwise zero in the c direction. From
the analysis in Ref. [13], the parameters are estimated as
U ’ 2:25 eV, U0 ’ 1:93 eV, and JH ’ 0:16 eV. The trans-
fer integral t is set to be 0.12 eV based on the estimate of
the bandwidth ’ 1 eV in first-principle calculations [16].
Then the orbital exchange interaction along the c axis is
estimated as Jc ’ 33 meV, while J�ab ’ 2 meV. We set
Jc � 1 as an energy unit in the following calculations.

Here we point out two important features in Eqs. (1)
and (2). One is that the exchange in the c direction is
Heisenberg-type while that within the ab plane is Ising-
type. From this, one might expect a strong quantum
fluctuation in the c direction as pointed out in Ref. [14].
However, this quantum nature becomes relevant only
when the JT coupling is negligibly small, and this is not
the case in LaVO3 as discussed in the following. The
other important feature is the large 1D anisotropy in the
orbital exchange couplings. Note that the negative inter-
ference among different perturbation processes occurs in
the in-plane coupling J�ab in Eq. (4), which results in the
ratio of the exchange couplings Jc=J�ab 
 17.

The JT coupling in the subspace of � is given by

H JT �
X

i

gQi�
z
i �

1

2

X

i

Q2
i ; (6)

where Qi is the JT phonon coordinate at site i. We neglect
the kinetic energy of phonons, namely, regard Qi as a
classical variable. It is crucial to estimate the coupling
constant g, and we have done the following first-principle
calculation [17]. Assuming the tetragonal symmetry, we
calculate the total energy as a function of the JT distor-
tion as shown in Fig. 2. This gives the JT stabilization
energy 
27 meV, which approximately corresponds to
EJT � g2=8 in our model. Thus, we obtain the estimate
EJT ’ 0:8Jc (g ’ 2:6), which is appreciable and cannot be
neglected as in Ref. [14].

The last term is the relativistic spin-orbit coupling,
which may be important in the t2g systems. We obtain
the effective Hamiltonian by projecting the original form
H LS �

P
i % ~LLi � ~SSi to the subspace of � by using the

experimental fact that the spins lie within the ab plane
[18]. Here ~LLi is the orbital angular momentum. Since Lx
has matrix elements between xy and �yz; zx� in this case,
the spin-orbit interaction is represented by H LS �P

i &�
z
i , where & � %2=� and � is the energy separation

between xy and �yz; zx� orbital levels. This indicates that
146602-2
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FIG. 3. (a) Contributions depending on temperature and (b)
total weights in the ground state for the spectral weight as a
function of the Jahn-Teller coupling g.
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FIG. 2. Total energy per V atom as a function of the Jahn-
Teller distortion obtained by the LDA �U calculation. The
inset shows the tetragonal distortion of VO6 octahedra consid-
ered here. The curve is a fit by a quadratic polynomial.
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the spin-orbit coupling corresponds to the pseudomag-
netic field along the z direction. Using %
 20 meV in V
atom and the estimate of � 
 1 eV in the band calculation
[16], we estimate & 
 0:4 meV 
 0:01Jc. This is small
enough to be neglected in the following calculations.

First, we discuss the anisotropic temperature de-
pendence in the spectral weight. The spectral weight
is generally given by the kinetic energy of the system in
the ground state K as I � ��K=4N, where N is the
system size and we set e2 � 1 [19]. In the strong-coupling
limit, this is calculated by the exchange energy as shown
below. Let us consider the Heisenberg model for the
strong-coupling limit of the Hubbard model at half
filling. The kinetic energy in the Hubbard model is cal-
culated as K � t@hH i=@t � @hH i=@ lnt. Here the
bracket denotes the expectation value in the ground state.
Since the exchange coupling J in the Heisenberg model
is proportional to t2, we obtain I � ���=4N� �
2@hH i=@ lnJ � ��hH Heisi=2N, where H Heis is the
Heisenberg Hamiltonian. Using this formula, we calcu-
late the spectral weight for the present model by the exact
diagonalization in the ground state for a 4 � 4-site lattice
embedded in the ac plane. In Fig. 3(a), the obtained
values of �Ic � ��Jc

P
h ~��i � ~��ji=2N and �Iab �

��J�ab
P
h�zi �

z
ji=2N are plotted as a function of the JT

coupling g. Note that these exchange correlations corre-
spond to the enhancements of the spectral weights from
the high-temperature limit to the ground state. The results
indicate that the contribution in the c axis is much larger
than that in the ab plane. The ratio becomes larger than
20 for the realistic value of g ’ 2:6. This explains well the
anisotropic temperature dependence of the spectral
weight in Fig. 1.

We also discuss the magnitude of the total spectral
weight in the ground state. Figure 3(b) shows the calcu-
lated spectral weights I� � ��hH�

orbi=2N which in-
clude the contributions from the constants in Eqs. (1)
and (2). As shown in Fig. 3(b), the ratio Ic=Iab is almost
1 for the realistic value of g, which is much smaller than
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that of the temperature dependent part in Fig. 3(a). This
ratio is comparable but smaller than the experimental
result Ic=Iab 
 2 in Fig. 1. This might be due to the facts
that (i) the cutoff energy 2.8 eV for the integration is
not large enough to take all the contribution of Iab, and
(ii) the transfer integrals for the different orbitals are
different because they depend on the energy difference
�dp between the d and the oxygen p orbitals as the energy
denominator. Since the huge anisotropy in temperature
dependences is reproduced with the moderate anisotropy
in the total weights, we believe that the orbital 1D con-
finement in our model plays a major role in the aniso-
tropic electronic state in this material.

We now turn to the discussion on the transition tem-
peratures. In order to obtain the phase diagram at finite
temperatures, we apply the transfer matrix method [20]
combined with the unrestricted Hartree-Fock approxi-
mation for the interchain coupling J�ab [21]. We start
from a configuration of fQig and calculate the expectation
value h�zi i numerically. Then, from the self-consistent
equation Qi � �gh�zi i which is obtained as the energy
minimization for Qi, we define a new configuration of
fQig. We repeat this procedure until fQig is optimized and
the energy is minimized. In this treatment, J�ab is effec-
tively absorbed into the JT coupling g as

P
i�gQi �

2J�abh�
z
i i��

z
i � �

P
i $gg2h�zi i�

z
i , where $gg2 � g2 � 2J�ab.

The obtained transition temperature for the orbital/lattice
ordering transition is plotted as a function of $gg in Fig. 4.
We note that, for large g, the transition temperature
diverges as To 
 g2=4 which corresponds to the JTenergy
gap. However, this is an artifact of the mean-field-type
treatment, and in reality To should stay at a constant of
the order of Jc since the coupling by Jc between the
neighboring sites determines To in the limit of large g.

Considering the realistic value of Jc ’ 33 meV and
EJT ’ 27 meV (g ’ $gg ’ 2:6) for LaVO3, the orbital tran-
sition temperature is estimated as To 
 800 K which is
much higher than the observed TN ’ 143 K as indicated
in Fig. 4. One might think that this contradicts with the
experimental fact TN > Texp

o . However, the phase dia-
gram is obtained assuming the C-type SO, which induces
146602-3
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the 1D confinement of the orbital degrees of freedom
with the enhanced Jc. Note that the disorder of the spins
should reduce the effective orbital exchange as easily
shown in the spin-orbital coupled Hamiltonian. It is
also well known that 1D systems have an enhanced
instability to lattice distortions compared with higher
dimensions. Therefore, T1D

o � To under this 1D orbital
confinement can be higher than T3D

o without the SO when
the JT coupling governs the OO transitions. In real ma-
terials with To > TN, T3D

o decreases as the bandwidth
increases, which indicates the relevance of the JT cou-
pling. (If the 3D orbital exchange couplings dominate,
T3D

o should increase as TN does.) Then, when the inequal-
ity T3D

o < TN < T1D
o is satisfied, the OO transition with

the JT lattice distortion should take place as soon as the
SO grows and induces the 1D confinement in the orbital
channel. In this scenario, comparing T1D

o with TN, we can
estimate the lower bound for the value of g to realize this
proximity of the transition temperatures. Our estimation
for this lower bound from Fig. 4 is g
 1 which is con-
sistent with the estimate in Fig. 2.

Let us discuss this proximity of TN and Texp
o by the

Ginzburg-Landau–type argument. In this spin-orbital
coupled system, we have the term in which the SO pa-
rameter M and the OO one O are coupled as fa�T� �
bM2gO2. Here a�T� is the coefficient for the second-order
term for OO without SO which is given by a�T� � a0�T �
T3D

o �. Our results indicate the relation a�T� � bM2
sat �

a0�T � T1D
o �, where Msat is the saturated magnetic mo-

ment. Texp
o is given by solving the equation a�Texp

o � �
bM2�Texp

o � � 0. Assuming M�T� � Msat

����������������������������
�TN � T�=TN

p

for simplicity, the difference between TN and Texp
o is given

by -T=TN � �TN � Texp
o �=TN � �TN � T3D

o �=�TN � �T�,
where �T � T1D

o � T3D
o . Considering the systematic

changes of TN and To for A-site ions [11], we expect that
T3D

o is slightly lower than TN in LaVO3 and CeVO3.
Assuming T3D

o � 0:8TN, we plot the expected Texp
o

in Fig. 4 as the gray curve. For the realistic value of g,
146602-4
we have Texp
o quite close to TN as observed in these

compounds.
In summary, we have investigated the role of orbitals

to understand the electronic state in LaVO3. We have
derived the effective orbital model with strong one-
dimensional anisotropy assuming the C-type spin order-
ing. We conclude that, with the realistic Jahn-Teller
coupling, the orbital 1D confinement leads to an enhanced
instability toward lattice distortions suppressing the or-
bital quantum nature. This gives a comprehensive de-
scription of the anisotropy in the optical spectra and the
proximity of the critical temperatures of magnetic and
orbital transitions.
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