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By shifting the reference system for the local-density approximation (LDA) from the electron gas to
other model systems, one obtains a new class of density functionals, which by design account for the
correlations present in the chosen reference system. This strategy is illustrated by constructing an
explicit LDA for the one-dimensional Hubbard model. While the traditional ab initio LDA is based on a
Fermi liquid (the three-dimensional interacting electron gas), this one is based on a Luttinger liquid.
First applications to inhomogeneous Hubbard models, including one containing a localized impurity,
are reported.
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can be solved exactly by Bethe-ansatz (BA) techniques or
bosonization (in one dimension, e.g., the repulsive and the

unattainable system sizes. This functional, denoted
the BA-LDA, has built into it the Luttinger-liquid
Density-functional theory (DFT) [1] is the basis
of almost all of today’s electronic-structure theory, and
much of materials science and quantum chemistry. Many-
body effects enter DFT via the exchange-correlation
(xc) functional, which is commonly approximated by the
local-density approximation (LDA) [1]. The essence of
the LDA is to locally approximate the xc energy of the
inhomogeneous system under study by that of the homo-
geneous electron gas. This electron gas plays the role of a
reference system, whose correlations are transferred by
the LDA into the DFT description of the inhomogeneous
system. The most popular improvements upon the LDA
are generalized gradient approximations [2], whose basic
philosophy is to abandon the requirement of homogeneity
of the reference system. This system, however, is nor-
mally still the interacting electron gas [2].

In this Letter we propose to explore a different para-
digm for the construction of novel density functionals:
instead of sticking to the electron gas as a reference
system, and abandoning homogeneity, it may sometimes
be advantageous to do the reverse: stick to homogeneity
(and thus to the LDA) but abandon the electron gas as a
reference system. The new reference system is chosen
such that it accounts for the correlations present in the
inhomogeneous system under study.

The only requirement for the reference system is that in
the absence of any spatially varying external potential its
xc energy must be known exactly or to a high degree of
numerical precision. Besides the electron gas (or Jellium
model) there are many other physically interesting model
systems that satisfy this criterion. Most notable among
these is a large class of low-dimensional models which
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attractive Hubbard model, the hard-core Fermi and Bose
gases, the Heisenberg, the supersymmetric t-J, and the
Tomonaga-Luttinger model [3,4]). The solutions to these
models in the homogeneous case can be used instead of
the electron gas to construct LDA functionals that can
then be applied to study these models also in inhomoge-
neous situations. The main advantage offered by a DFT
treatment of such models is the gain in simplicity that
arises from mapping the inhomogeneous interacting
many-body system onto a noninteracting auxiliary sys-
tem, which is diagonalized much more easily.

Below we implement these ideas for the one-
dimensional Hubbard model (1DHM), by construct-
ing an LDA based on the exact Bethe-ansatz solution
of Lieb and Wu [5]. A DFT treatment of the Hubbard
model has been pioneered by Gunnarsson and Schön-
hammer in Ref. [6], but the LDA-type functional they
proposed has in practice often led to disappointing results
[7], and was criticized as not being a proper LDA since it
was not based on the exact solution of a homogeneous
reference system [8]. As a consequence, more compli-
cated approximation schemes, such as self-interaction
corrections, are often employed [9]. An attempt to base
a proper LDA for the Hubbard model on the BAwas made
in Ref. [10], but the formulation of that work has not been
widely applied, probably because no explicit expression
for the resulting xc functional was provided.

Motivated by our above analysis of the possibility of
switching reference systems for the LDAwe construct, in
the present paper, an explicit and simple BA xc functional
and apply it to a variety of inhomogeneous Hubbard
models, among them an impurity model for previously
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FIG. 1. Total energy calculated from BA-LDA (open squares)
and exact diagonalization (full circles) versus system size, for a
1DHM with open boundary conditions and U � 6. For even L
we take N � L=2 (so that n � N=L � 1=2, corresponding to
quarter filling). For odd L we take N � �L� 1=2. The error
bar at L � 14 represents the intrinsic error of the parametriza-
tion (2), as estimated from the inset. For L � 14 the BA-LDA
data agree with the exact ones within this error. Inset:
Exchange-correlation energy of the infinite 1DHM as a func-
tion of n for several values of U. The full curves represent our
parametrization (2) with (3), and the symbols represent values
obtained from numerical solution of the Lieb-Wu BA integral
equation for U � 3; 6, and 9. For U � 0 and U � 1 the pa-
rametrization is exact.
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correlations present in the 1DHM [3,4], in the same way
in which the conventional LDA has built into it the
Fermi-liquid correlations present in the electron gas.

The Hamiltonian for the homogeneous 1DHM is, in
standard notation,

ĤH � �t
X
hiji;


cyi
cj
 �U
X
i

cyi"ci"c
y
i#ci#: (1)

Here t is the kinetic energy (in the following taken to be
the unit of energy) and U the interaction (considered a
fixed parameter, characterizing the Hamiltonian). To
construct an LDA we first develop a parametrization for
the total energy per site, as a function of U and n(the
filling factor, a constant in the homogeneous case). Our
parametrization interpolates analytically between three
limiting cases in which explicit results can be extracted
from the Bethe-ansatz solution [3,5]: (i) U ! 0 and any
n 
 1, (ii) U ! 1 and any n 
 1, and (iii) n � 1 and any
U [11]. The expression

eBA�n;U � �
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�
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�
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where ��U is an (n independent) number which is
determined for any given value of U from

�
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0
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and J0 and J1 are zero and first order Bessel functions,
recovers all three limits: The right-hand side of Eq. (3) is
the exact BA expression for the total energy at half filling.
The parameter � is thus determined such that at n � 1
Eq. (2) becomes exact. On the other hand, Eq. (2) is
already of the algebraic form of the exact results for the
limits U � 0 and U ! 1, in which � � 2 and � � 1,
respectively. In these limits the integral in Eq. (3) can be
calculated analytically, and one indeed recovers these
values for ��U [12].

Equation (2) with ��U determined from (3) is thus
exact in the three situations mentioned above. In order to
check whether these equations provide a reasonable ap-
proximation also between these limits, we have numeri-
cally solved the Lieb-Wu integral equations for the full
Bethe-ansatz solution [5] and compared the resulting
total and xc energies with the one obtained from
Eqs. (2) and (3). We find that both agree to within at
most a few percent, even for values of the parameters
far away from the exact limiting cases. This is illustrated
in the inset of Fig. 1.

In order to extract the exchange-correlation energy
eBAxc �n;U from the total-energy expression (2), one fol-
lows the usual prescription of DFT [1] and subtracts the
Hartree energy and the noninteracting kinetic energy.
This latter energy is simply given by substituting � � 2
in Eq. (2). In the spirit of the usual electron gas LDA
we can then construct an LDA for the 1DHM, i.e.,
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EBA-LDA
xc �ni;U� �

X
i

eBAxc �n;Ujn!ni ; (4)

where ni �
P


hc
y
i
ci
i. Given this expression for the xc

functional, ground-state properties of Hubbard models
subject to a wide spectrum of inhomogeneities can be
calculated from DFT. Note that in such a calculation
Eq. (3) must be solved only once for any given value of
U, i.e., determination of � takes place outside the self-
consistency cycle of DFT.

As a first numerical example we apply the BA-LDA to a
finite 1DHM with open boundary conditions, and calcu-
late its ground-state energy as a function of the number of
sites L. In Fig. 1 we compare our results with those
obtained from exact (Lanczos) diagonalization of the
same system. We see that around L � 7 there is a cross-
over between exact and approximate data points (sepa-
rately for even and odd values of L). After that, the
deviation between both sets of data saturates to a value
near the intrinsic error of the interpolation (2), indicated
by the error bar. As an example for a truly inhomoge-
neous system we now add an on-site potentialP

i
 vic
y
i
ci
 to the Hamiltonian. Our results for a binary

potential (with vi � �1 on the odd sites and vi � �1 on
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the even ones) are displayed and compared with exact
diagonalization in Fig. 2.

We have performed similar calculations also for several
other values of U and other external potentials vi. Our
conclusions from these calculations are the following:
(i) The accuracy of the BA-LDA total energy is typically
of the order of a few percent, and much better than that
near crossovers and near the limits at which Eq. (2)
exactly represents the underlying homogeneous reference
data (U � 0, U ! 1, n � 1). (ii) Unlike traditional
methods, the quality of the BA-LDA does not deteriorate
as L increases, and the computational effort associated
with it is that of diagonalizing a noninteracting system.
Fully self-consistent calculations for systems with tens of
thousands of sites are thus possible. This is a unique, and
rather desirable, feature of the BA-DFT, as compared to
traditional methods.

Interestingly, when one of the site occupation numbers
comes very close to 1 (typically within less than 5�
10�3), the self-consistency cycle associated with the
Hubbard model Kohn-Sham equations does not neces-
sarily converge. In the homogeneous case n � 1 (half
filling) marks the Mott metal-insulator transition associ-
ated with the opening of a gap in the energy spectrum
[3–5]. Whenever in a metallic system one of the site
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FIG. 2. Total energy of the 1DHM with a binary site potential
and periodic boundary conditions, as described in the main
text, for U � 6 and n � 1=2. Open squares: BA-LDA; full
circles: exact diagonalization. Inset: exact xc energy and LDA
xc energy, evaluated at exact and LDA densities, respectively.
The absolute errors in the LDA xc energy and total energy are
different because in the LDA the Hartree, external potential,
and noninteracting kinetic components of the total energy are
also evaluated at the LDA density, not at the exact one.
However, the xc energy is the dominating source of error in
the total energy and the relative error in the total energy is
considerably smaller than that in its xc component.
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occupation numbers comes close to 1, a local approxima-
tion, such as the BA-LDA, thus treats the system at that
site as if it were an insulator, in spite of the fact that the
metallic (Luttinger-liquid) correlations are very different
from those of the Mott insulator. The 1DHM thus con-
stitutes a theoretical laboratory in which the band-gap
problem of DFT can be studied [6,10]. Results obtained
with the present functional are reported in Ref. [13].

After these preliminary investigations we now
consider a case that illustrates the full power of the
BA-LDA approach: a localized impurity. For this kind
of system traditional approaches face the problem of slow
convergence to the thermodynamic limit. Different types
of impurities in the Hubbard model have been studied in
the literature by various techniques [6,14]. Here we model
the impurity by choosing vI � �1 at the impurity site
and v � 0 everywhere else, so that electrons will be
dragged to the impurity site. The density distribution
for the 201-site system is displayed in Fig. 3, while the
convergence to the thermodynamic limit is illustrated in
Fig. 4, which also contains results obtained for a much
more attractive impurity with vI � �10.

The difference between open and periodic boundary
conditions becomes small only when the system size L
exceeds the damping length of the Friedel oscillations
originating at the surface in the open case. To bring out
clearly the effect of the impurity, regardless of the choice
of boundary conditions, we have, in both figures, sub-
tracted the results for the same boundary conditions
without the impurity. What remains are the Friedel oscil-
lations originating at the impurity. These oscillations
on their own significantly slow down the convergence of
the total energy to the thermodynamic limit: Fig. 4
FIG. 3. Density distribution for a system with L � 201 sites,
N � 101 electrons, U � 6, and a localized impurity with vI �
�1. Main curve: periodic boundary conditions. Inset: open
boundary conditions. The density of the same system without
impurity has been subtracted to display clearly the impurity-
added contribution.
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FIG. 4. Total energy calculated from BA-LDA for the im-
purity model of Fig. 3, with open (full symbols) and periodic
(empty symbols) boundary conditions, plotted as a function of
the inverse system size. Impurity strength vI � �1 (upper
curve), and vI � �10 (lower curve). The lines are guides for
the eye.
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shows that, as expected in the thermodynamic limit, the
impurity-added contribution to the total energy scales
linearly with the impurity concentration 1=L. The im-
purity problem thus illustrates an area in which the
BA-LDA can be useful, since systems of the size required
to approximate the thermodynamic limit to within a
percent or better are hard to study with traditional meth-
ods, in particular, for periodic boundary conditions.

For small systems, where exact diagonalization is
possible, we also compared the density distributions
obtained from the BA-LDA with the exact ones. Both
agree quantitatively. For larger systems one can use
the BA-LDA results to study the asymptotic algebraic
decay of the oscillations. For the case depicted in
Fig. 3 we find, for example, that the oscillations decay
as 1=x�, where x is the distance to the impurity site
and ��U � 6 � 1:30. This exponent is a nonuniversal
(interaction-dependent) parameter characteristic for the
impurity system. By repeating this calculation for other
values of U we obtain, e.g., ��U� 4 � 1:25, ��U� 2 �
1:20, and ��U � 0 � 1:0.

For the BA-LDA the limit on the size of the systems
which can be treated is much less restraining than for
traditional methods, since one must diagonalize only a
noninteracting (Kohn-Sham) Hamiltonian. For small sys-
tems the accuracy attained is clearly inferior to density-
matrix renormalization group [15] or quantum Monte
Carlo [16] methods. This situation parallels the one in
which DFT finds itself in ab initio calculations: Practical
applications of ab initio DFT usually do not lead to high
accuracy. Band structures, for example, are more accu-
rately calculated using GW [17], and properties of small
molecules are better obtained from configuration inter-
146402-4
action [18]. However, these are computationally expen-
sive methods that place great demands on one’s resources
and are not easily applicable to complex and/or large
systems (e.g., molecules with more than a few atoms).
The power of ab initio DFT arises from the relative
facility with which it is applied to large and complex
systems. In the same spirit, DFT using generalized LDA’s
may provide a useful alternative to traditional methods
for correlated models with a large number of sites. Results
obtained with the present approach for the Mott insulator
and the Luttinger liquid are reported in Refs. [13,19].
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