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Dense, Rapid Flows of Inelastic Grains under Gravity
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The standard hydrodynamic description does not apply to the rapid flow regime of inelastic grains in
the dense limit. Emphasizing the role of inelastic loss and collapse, we propose a new approach relying
on a nonlocal dissipation scheme. Our model succeeds in accounting qualitatively and quantitatively for
the linear profile of velocity found in experiments on dense gravity-driven flows.
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FIG. 1. Flow of a collection of monodisperse aluminum

sliding of grains over adjacent corrugated layers of par-
ticles than from the ballistic flight of grains punctuated

spheres (restitution coefficient e� 0:6, flow rate �1100 grains=
sec, exposure time of the photograph: 1=125 sec).
During the past couple of decades, a number of at-
tempts have been made to adapt the classical kinetic
theory of hard-sphere gases to systems of macroscopic,
inelastic grains [1–4], and many experiments have been
carried out in parallel in order to gain insight into the
rheological properties of grain flows. Investigations have
been conducted in various setups, such as inclined chan-
nels [5–7], flumes [8,9], annular shear cells [10–12], or
rotating drums [13,14]. So far, there is a reasonable quali-
tative agreement between the predictions of kinetic theo-
ries and results of experiments conducted on dilute or
moderately dense granular media; that is, the relation � /
�1� e2�1=2d�1T1=2F��� is obeyed locally (� is the shear
rate, e is the elastic restitution coefficient, d the grain
diameter, T the ‘‘granular temperature’’ [15], � is the
solid fraction, and F��� results from density correlations
in the collision integral). However, experiments con-
ducted on dense rapid granular flows lead to drastically
different results, results which appear to lie beyond
the domain of validity of standard hydrodynamic de-
scriptions. Experimental results from inclined channel
geometries [5,6,8] as well as from rotating drums
[13,14,16,17] in two or three dimensions compare well,
in that they exhibit the following properties. First the
solid fraction appears as nearly constant in the flowing
layer, with value �m � 0:8 (in two dimensions) or �m �
0:64 (in three dimensions) corresponding to the random
close packing (except for the very upper region, owing to
the unevenness of the free surface). Second, the shear rate
� is found to be independent of the depth, i.e., the velocity
profile is linear (Figs. 1 and 2), and its order of magnitude
is given by

���������
g=d

p
(where g is the gravity constant and d is

the grain diameter). Interestingly, the rheological behav-
ior is found to be insensitive to the value of the restitution
coefficient e [16]. As for the instantaneous velocity fluc-
tuations in densely packed materials, it is important to
realize that reliable data are very difficult to obtain ex-
perimentally. Real experiments can access grain trajecto-
ries only to within the experimental time resolution, and
the ostensible velocity fluctuations result more from the
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by distinct collisions. Sampling of grain displacements
over a very short time compared to ��1 indicates a
constant value for the velocity fluctuations through the
flow, except for a thin transitional layer (1–2 grain di-
ameters) localized at the bottom interface.

The above observations cannot be accounted for by
kinetic theory. Indeed, introducing a gravity force into
the momentum balance leads to the relation @�xz=@z �
�g sin� in the steady regime (where x is the direction of
the flow, and z is oriented downwards, normal to the flow).
Since ��z� � const, a straightforward integration of the
momentum equation yields �xz � �gz sin�, which simply
expresses the linear dependence of the shear stress on
depth. According to kinetic theory, a constant-density,
isothermal gravity-driven flow of this type should exhibit
Bagnold’s quadratic dependence of the shear stress on
shear rate [18], since both the collisional momen-
tum exchange and the collision rate are proportional to
�. One therefore should obtain vx / ��gh3 sin��1=2 �
�1� �z=h�3=2	, and the 3=2-power law with respect to
 2003 The American Physical Society 144302-1



FIG. 2. Flow of aluminum grains, flow rate �1100 grains=
sec, averaged over 100 samplings. (�) Adimensioned velocity
profile; (�) surface fraction.
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the depth disagrees with the linear velocity profiles found
experimentally in dense media. On the other hand, as
mentioned above, kinetic theory agrees fairly well with
experiments on dilute media. We propose here to address
the issue of the anomalous experimental results and to
point out the reason for the inability of kinetic theory to
capture the behavior of rapid, dense grain flows. We
propose then a theoretical framework more suited to the
rheology of rapid grain flows in the dense limit. Finally
we address the role of intergranular friction.

In inclined channels a striking change of behavior can
be noticed according to the value of the elastic restitution
coefficient and to the depth of the flow [5,6]. For e close to
1 and/or for shallow beds, isolated grains undergo ballis-
tic flight between successive binary collisions; this cor-
responds to the dilute collisional regime described by
kinetic theories. On the other hand, for a small value of
the restitution coefficient, or for deep beds, grains are
densely packed. The latter situation corresponds to the
regime characterized by a linear profile of velocity, a
close-packed density, and constant velocity fluctuations
over the depth in the flowing layer. We interpret this
change from a dilute to a dense regime as follows. As
first demonstrated by Bernu and Mazighi in the one-
dimensional case [19], both momentum and energy are
fully damped after N � �=�1� e� impacts in the case of
a collision wave propagating along a one-dimensional
array. For ten grain diameters (which is the typical thick-
ness of granular layers studied in laboratory experi-
ments), this one-dimensional picture provides an
estimate of e � 0:7 for the occurrence of the inelastic
collapse of the flowing layer. The inelastic collapse phe-
nomenon has been generalized by McNamara and Young
[20] to two dimensions and the collapse criterion reads
N � ln��1� e�=4	= ln��1
 e�=2	. One gets thus e � 0:6
for N � 10.
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In view of the above considerations, it is improper to
consider isolated binary collisions in collapsed systems,
because a nearly infinite number of impacts occurs in a
finite time, completely attenuating both momentum and
kinetic energy throughout the bulk [19–21]. The associ-
ated damping time is very short compared to the charac-
teristic time ��1 of the shearing. As a result of this
nonlocal dissipation, the relative kinetic energy and mo-
mentum of two colliding particles fall very rapidly to
zero. Consequently, collisions cannot be modeled with the
original restitution coefficient e, since they are virtually
completely inelastic. This is why the observed rheology
appears independent of the real elastic restitution coef-
ficient e of the beads. Note that for collapsed systems, the
main source of dissipation does not originate in the vis-
cosity associated with diffusion of momentum, but in
collisional inelasticity, because the associated time is
the shorter. The inelastic collapse phenomenon is also
relevant to the explanation of the behavior of a single
grain dropped onto a thick layer of particles. No bounce is
observed, even in the case of a elastic restitution coeffi-
cient close to unity. The reason that is improper is to take
total momentum as conserved in the center-of-mass
frame of the two colliding grains involved in the nominal
binary collision, because the whole substrate is involved
in the momentum absorption process. An accounting of
whole substrate (at rest) is required for a correct applica-
tion of Newton’s law. Since the total momentum before
the collision of all involved bodies is practically zero, and
since the apparent restitution coefficient is zero, we read-
ily conclude that there is no bounce. This example serves
to emphasize the necessity of considering nonlocal mech-
anisms for the momentum conservation in inelastic,
dense media, in contrast to the standard derivation of
the Navier-Stokes equation in hydrodynamic theory. In
the following we attempt to model the rheological behav-
ior of densely packed media on the basis of the pre-
vious considerations. We demonstrate that the linear
velocity profile exhibited (in the steady regime) by col-
lapsed granular media flowing down on incline results
from the nonlocality of the momentum and the energy
conservation.

Although a direct use of the Navier-Stokes equation is
incorrect, it is nevertheless possible to gain insight into
the rheological behavior of densely packed granular me-
dia by considering the energy balance. Let us consider an
elementary shear transformation as sketched in Fig. 3.
We assume that all losses originate in inelasticity. Con-
sider then the collision between a grain having velocity vi
and belonging to the layer (i) and a grain having velocity
vi
1 and belonging to the layer (i
 1) beneath. In the
case of binary collisions, the inelastic energy loss (per
collision) is given by Esink �

1
4m�1� e

2��vi � vi
1�
2.

This expression implies the conservation under collision
of the total momentum and kinetic energy of the center of
mass of the colliding particles. Thus this expression is
144302-2



FIG. 3. Representation of an elementary shear transforma-
tion. The velocity of the upper layer (i) is vi, that of the layer
(i
 1) beneath is vi
1.
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now incorrect, because the pair of grains considered is not
isolated, and an appreciable fraction of the total momen-
tum and kinetic energy is transmitted to surrounding
particles. It is therefore more appropriate to identify the
energy sink (partly mediated by nonlocal processes, such
as collisional [19,20] or acoustic waves) with the total
dissipation of the kinetic energy gained between consecu-
tive collisions; that is, Esink �

1
2m�v

2
i � v2i
1�. Besides

ensuring a steady regime, this expression accounts for
the ‘‘sticking effect’’ experienced by a grain colliding
with a collapsed cluster (i.e., for the full damping of the
relative momentum), without entering into the details of
the nonlocal dissipation processes. Let us adopt then the
Eulerian description.

In the laboratory frame the decrease of the potential
energy of one grain between two successive collisions
reads mgv�rv��1, since the frequency of collisions be-
tween adjacent layers is equal to rv. Accordingly, the
kinetic energy dissipated per collision reads Esink �
1
2m�v

2
i � v2i
1� � mv�drv�. Equating the gain of kinetic

energy between two collisions with the dissipation per
collision yields for frictionless particles

@vx
@z

�

���
g
d

r
: (1)

The above derivation leads to the correct experimental
result, namely, a constant shear rate with an order of
magnitude

���������
g=d

p
, without predicting the coefficient of

proportionality between rv and
���������
g=d

p
which is found

experimentally to range between 0.4 and 0.7. As will
be shown further, an accounting for the sliding fric-
tion is required to recover the right experimental value.
Note that the z-translational invariance found for the
shear rate is also consistent with the z invariance found
for other physical quantities, such as velocity fluctuations
or density.

It is interesting to point out that within the postulated
nonlocal dissipation scheme, the energy balance (per unit
mass) reads

d�rv�2v � gv (2)

in the Eulerian description. This is to be compared with
the relation d2�rv�3 / gv that would have been obtained
from the usual local description assuming isolated binary
collision, for homogeneous, isothermal media [the term
as �rv�3 accounts both for viscous and for inelastic dis-
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sipation]. It is noteworthy that the left-hand term of
Eq. (2) can be formally regarded as the rate of energy
dissipated by the work of a volume force F �
��d�rv�2v=jvj. From this consideration, the following
momentum equation (per unit mass) ensues:

Dv
Dt

� g� d�rv�2 (3)

(where D=Dt is the material derivative), to be com-
pared with the standard Bagnold form Dv=Dt �
g� �d2�@�rv�2=@z	.

Above we mapped the inelastic loss term into the work
of an equivalent volume force F. It can also be interpreted
as the work of a shear stress �coll acting over the surfaces
of an elementary volume. Reintroducing the slope angle
�, we get

�coll � ��zd�rv�2 � ��d=g cos��p�rv�2; (4)

where p � �gz cos� is the pressure. Although this stand-
point is somewhat formal, the previous relation can be
viewed as the constitutive relation relating stress to strain
rate in a collapsed granular material flowing under grav-
ity. Compared to the classical Bagnold result � /
��d2�rv�2, the new feature here is the linear dependence
of the shear stress on the normal stress—as with Coulomb
solid friction. Note that a closely related constitutive
relation also depending both on the pressure and shear
rate was heuristically proposed recently by Chevoir et al.
to explain their experimental data [22].

So far we focused on the rheological behavior of fric-
tionless particles. We aim now to address the role of
intergranular sliding friction in the rheology. Torques
originating in frictional contacts and acting on each
particle can likely induce certain short range spatial
correlations in grain rotations, but an investigation of
this effect which occurs at microscopic scale is beyond
the scope of this Letter. Instead, we wish here to concen-
trate on the issue of the macroscopic influence of the
sliding friction on the shear rate. A noteworthy experi-
mental result is that experiments conducted with highly
frictional beads (with surface modified by chemical at-
tack) also exhibit linear profiles of velocity in the dense
limit [16,23]. The only noticeable effect of the increased
intergranular friction is a decrease of the flow rate, which
obviously results from the larger fraction taken by fric-
tional loss in dissipating gravitational potential energy.
The persistency of the linear velocity profile directly
results from the rate independence of Coulomb friction.
Frictional dissipation can indeed be shown to be propor-
tional to the flow rate, whatever the velocity profile
[16,23]. As a consequence Coulomb friction does not
play any role in determining the velocity profile, which
is actually determined by others constraints, such as the
rate-dependent viscosity for dilute granular media, or the
inelastic losses, in the case of collapsed systems.
144302-3
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Adding the Coulomb friction term, which reads (per
unit volume) @�xz=@z � k�g cos� (where k � tan�c is
the coefficient of friction of the material) on the right-
hand side of Eq. (4) readily yields

Dv
Dt

�
g

cos�c
sin��� �c� � d�rv�2; (5)

and we obtain hence

rv �

�
sin��� �c�

cos�c

�
1=2

���
g
d

r
; (6)

in the steady regime for the shear rate. Taking a typical
value of 20� for �c leads to a value of the prefactor
�sin��� �c�= cos�c	

1=2 ranging between 0.4 and 0.7 in
the range 30� < �< 50� investigated experimentally,
which is consistent with data. We deduce for the flow
rate the relation Q � �g sin��� �c�=d cos�c	1=2�h2=2�
(where h is the depth of the flowing layer), which holds
provided that the condition of zero velocity (nonsliding) is
satisfied at the bottom. Experimentally, the dependence
on shear rate indicated by Eq. (6) has been recognized
recently by Orpe and Khakhar [24].

It is of interest to compare the energy Wfric dissipated
by friction to that dissipated by inelastic collisions Einel.
We find �Wfric=Einel� � g tan�c cos�=d�rv�2, and hence

Wfric

Einel
�

sin�c cos�
sin��� �c�

: (7)

Note the divergence as ��� �c��1 in the limit �! �c.
This implies that for most of particulate flows encoun-
tered in nature, for which � is close to �c, the largest
fraction of the dissipation originates in the Coulomb
friction (although the shape of the velocity profile is
governed by the inelasticity of the collisions). For �c �
20� and � � 21�, we find �Wfric=Einel� � 18.

To conclude, we have revisited the usual assumptions
surrounding the rheology of rapid granular flows, and we
have shown that the Bagnold constitutive relation does not
hold in the dense limit. Emphasizing the role of the
inelastic collapse, we have proposed an alternative frame-
work and have demonstrated first that the rheology of
rapid, dense, frictionless flows is entirely governed by the
inelastic dissipation, which is shown to be equivalent to
the work of a volume force jFj � �d�rv�2. On these
bases, we have deduced the rheological behavior for
densely packed free surface flow of frictional grains
flowing down the inclined plane. We have determined
that the rheology is independent of the elastic restitution
coefficient, that the velocity profile is linear, and that the
shear rate is proportional to

���������
g=d

p
. The factor of propor-

tionality between rv and
���������
g=d

p
depends only on the

Coulomb friction and is equal to �sin��� �c�= cos�c	
1=2.

These results agree quantitatively with experimental
measurements. Finally we have also showed that for dense
144302-4
particulate flows, the dissipation is mainly due to fric-
tional sliding.
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