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Instabilities of Isotropic Solutions of Active Polar Filaments
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We study the dynamics of an isotropic solution of polar filaments coupled by molecular motors which
generate relative motion of the filaments in two and three dimensions. We investigate the stability of the
homogeneous state for constant motor concentration taking into account excluded volume and an
estimate of entanglement. At low filament density the system develops a density instability, while at
high density entanglement drives the instability of orientational fluctuations.
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motor remains attached to the filament — strongly influ- kBT
Cellular biology provides many realizations of pattern
formation in dissipative nonequilibrium systems. An ex-
ample is the collective behavior of the proteins that
compose the cytoskeleton of eukaryotic cells. The cyto-
skeleton provides both the supporting structure of the cell
and the vehicle for internal transport processes [1]. It is a
network of long protein filaments, mainly microtubules,
actin filaments, and intermediate filaments, coupled by
smaller proteins, such as molecular motors and cross-
linkers. Motor proteins convert chemical energy derived
from the hydrolysis of ATP (adenosine triphosphate) into
mechanical work, generating forces and motion of the
filaments relative to each other in these active gels.

Numerous in vitro experiments [2–5] have shown that
mixtures of filaments and their associated motor pro-
teins self-organize into macroscopic symmetry-breaking
structures, including radial arrays or asters and one-
dimensional bundles. The nonequilibrium forces that
give rise to these structures include the action of molecu-
lar motors and the polymerization/depolymerization
process of the filaments. Here we focus on the role of
motor proteins and assume that the filaments have fixed
length — a situation that can be achieved in vitro [4]. A
few analytical and numerical studies have investigated
the emergence of these complex patterns [4–10]. Con-
tinuum models of filament/motor systems in two dimen-
sions have been used to show that spatial patterns are
obtained as nonequilibrium solutions of the system dy-
namics [7,9]. These models have ignored either filament
diffusion [9] or the motor action on orientational dynam-
ics [7]. A more microscopic approach was taken by Kruse
et al. who considered a dynamical model for the develop-
ment of contractile and motile structures in one dimen-
sional polar filament bundles, while ignoring steric and
other interactions between the filaments [8,10].

Many open questions remain concerning the role of
the physical properties of the filament/motor gel in con-
trolling the formation of self-organized structures.
Experiments have indicated that motor properties, such
as their processivity — the fraction of time in a cycle a
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ence pattern formation. This is evident by comparing
in vitro experiments in microtubules-kinesin to those
in actin-myosin mixtures. At high motor concentra-
tion, microtubule-kinesin mixtures readily organize in a
variety of spatial patterns [4,5]. In contrast, the homoge-
neous state is much more robust in the weakly coupled
actin-myosin II systems, where spatially inhomogeneous
structures develop only upon depletion of ATP or at
much higher filament concentration [11]. The physical
characteristics of the filaments, such as their persistence
length, may also contribute to the different behavior of
these two gels.

In this Letter we generalize a phenomenological model
by Kruse et al. [8,10] and obtain a set of continuum
equations to describe the dynamics and organization of
polar filaments driven by molecular motors in an uncon-
fined geometry in (quasi-)two and three dimensions (d �
2; 3) [12]. By modeling the motor-filament interaction
microscopically, we can determine the magnitude and,
most importantly, the sign of the parameters of the con-
tinuum equations, which cannot be obtained by symme-
try arguments. We consider an isotropic filament solution,
include excluded volume, and estimate the effects of en-
tanglement on the diffusive dynamics. Our result is a
phase diagram (Fig. 2) as a function of the filament
density and motor properties that is expected to be rele-
vant to the analysis of recent experiments [5,11].

The filaments are modeled as rigid rods of length l and
diameter b � l. Each filament is identified by the posi-
tion r of its center of mass and a unit vector n̂n pointing
towards the polar end. Taking into account filament trans-
port, the normalized filament probability distribution
function, ��r; n̂n; t�, obeys a conservation law [13],

@t��r � J�R � Jr � 0; (1)

where R � n̂n � @n̂n is the rotation operator. The transla-
tional and rotational currents J and Jr are given by

Ji � 	Dij@j�	
Dij

�@jVex � Jacti ; (2)
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FIG. 1 (color online). Cartoons of motor-induced filament
interactions, viewed from the rest frame of filament 2. The
angular bracket connecting each pair of filaments represents
the motor. (a) An interaction that results in aligned filaments. It
can be thought of as a translation at rate � along the direction
of the relative filament separation, �, followed by a counter-
clockwise rotation of filament 1 about its center of mass at a
rate �. (b) An interaction that results in antialigned filaments. It
can be thought of as a clockwise rotation of filament 1 at a rate
�, followed by a translation along the direction of n̂n2 	 n̂n1 at
a rate �.
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Jri � 	DrRi�	
Dr

kBT
�RiVex � Jr=acti ; (3)

where i � 1; . . . ; d, Dij � Dkn̂nin̂nj �D?��ij 	 n̂nin̂nj� is
the translational diffusion tensor, and Dr is the rotational
diffusion constant. The potential Vex incorporates ex-
cluded volume effects that play an important role in
stabilizing time-dependent solutions. It is given by kBT
times the probability of finding another rod in the inter-
action area of a given rod,

Vex�r; n̂n1� � kBT
Z
n̂n2

Z 0

�
��r� �; n̂n2�; (4)

where the prime restricts the integral to the interaction
volume, corresponding to the region where the two fila-
ments touch at at least one point. The volume of this
region is Vint � v0

�����������������������������
1	 �n̂n1 � n̂n2�

2
p

, with v0 � l2bd	2

and l2
�����������������������������
1	 �n̂n1 � n̂n2�

2
p

> b2. The active currents are
given by

Jact�r; n̂n1� �
Z
n̂n2

Z 0

�
v��; n̂n1; n̂n2���r; n̂n1���r� �; n̂n2�;

(5)

Jr=act�r; n̂n1� �
Z
n̂n2

Z 0

�
!��; n̂n1; n̂n2���r; n̂n1���r� �; n̂n2�;

(6)

where v � 	 _�� and ! � _̂nn̂nn1 	 _̂nn̂nn2 are the relative linear
and angular velocities of two filaments, with the dot
denoting a time derivative. The model naturally contains
two competing dynamics. The first is the diffusion of
hard rods, which at high density must include excluded
volume and entanglement. The second is the local driving
force coming from the interaction with the motors. This
depends on the polarity of the filaments and breaks the
n̂n ! 	n̂n symmetry of the hard rod fluid, allowing for
states of broken symmetry.

In the absence of external forces and torques the total
linear and angular velocity of an interacting pair are
conserved. This requires v��; n̂n1; n̂n2� � 	v�	�; n̂n2; n̂n1�
and !��; n̂n1; n̂n2� � 	!�	�; n̂n2; n̂n1�. Rotational and
translational invariance requires v��;n̂n1;n̂n2��
	v�	�;	n̂n1;	n̂n2� and !��;n̂n1;n̂n2��!�	�;	n̂n1;	n̂n2�.
The simplest form for the velocities can be written as

v �
�
2l

��1� n̂n1 � n̂n2������������������������������
1	 �n̂n1 � n̂n2�

2
p �

�
2

n̂n2 	 n̂n1�����������������������������
1	 �n̂n1 � n̂n2�

2
p ; (7)

! � ��n̂n1 � n̂n2�
n̂n1 � n̂n2�����������������������������

1	 �n̂n1 � n̂n2�
2

p : (8)

The velocities have been normalized with the volume of
interaction. The parameters �, �, and � are the rates for
the various motor-induced translations and rotations. The
contribution proportional to � depends on the separation
of the centers of the filaments and results from a differ-
ence in motor activity between the ends and midpoints of
the filaments. It tends to align the centers of mass and
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polar heads of the pair [see Fig. 1(a)]. The contribution
proportional to � vanishes for aligned filaments and can
separate antiparallel filaments, as illustrated in Fig. 1(b).
This mechanism yields both translational and rotational
currents. The prefactor �n̂n1 � n̂n2� in the angular velocity
guarantees that motors preferentially bind to two fila-
ments that are at an angle smaller than �=2. The �
term has no effect on perpendicular filaments. To estimate
the rates �, �, and �, we assume that the motors form
small [14] clusters of well defined mean size. The clusters
cross-link two filaments, but only one of the motors in a
cluster advances on a given filament. The speed of the
motor depends on its position along the filament
(although our estimate does not depend on the detailed
functional form) and vanishes at the polar end, where the
motors stall. Assuming a uniform motor ‘‘cluster’’ den-
sity, �m, from simple mechanical models of motors [1],
we estimate � ’ � ’ �l ’ �mlb

2��sc=�c�, with sc the
motor step length per cycle, �c the time for one cycle,
and � the duty ratio.

To describe the filament dynamics on length scales
large compared to their length, l, we expand the concen-
tration of filaments ��r� �; n̂n2� near its value at r,

��r��; n̂n2� ���r; n̂n2�� nêen �r��r; n̂n2�

� 1
2 n m�êen �r��êem �r���r; n̂n2��O� 3�:

(9)

We have introduced a set of orthogonal unit vectors,
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�êe1; êe2; ẑz�, that provides a natural coordinate system for
the problem. The unit vector ẑz is normal to the plane
passing through the point of contact of the two filaments
and containing the unit vectors n̂n1 and n̂n2. The vectors
êe1��n̂n1� n̂n2�=jn̂n1� n̂n2j and êe2� sgn�n̂n1 � n̂n2��n̂n2	 n̂n1�=
jn̂n2 � n̂n1j are orthogonal unit vectors in this plane.
Neglecting the out-of-plane separation (of order b) be-
tween the centers of mass of the two filaments, the vector
� is written in this coordinate system as �� nêen, where
summation over n�1;2 is intended. We assume that on
large scales the filament dynamics can be described in
terms of the filaments density ��r� and the local filament
orientation t�r� defined as the first two moments of the
distribution ��r; r̂r;t�,
138102-3
�
��r;t�
t�r;t�

�
�
Z
dn̂n

�
1

n̂n

�
��r;n̂n;t�: (10)

Coarse-grained equations for � and t can be obtained by
inserting Eq. (9) in the expressions for the active currents
and for Vex, writing the density ��r;n̂n;t� in the form of an
exact moment expansion, and retaining only the first two
moments in this expansion. For brevity, we display here
only the dynamical equations linearized about a homo-
geneous state, with constant density �0 and an isotropic
orientational distribution of filaments, corresponding to
t�0. The full and rather cumbersome nonlinear equa-
tions will be given elsewhere [15]. Letting ���0���
and keeping only terms up to third order in the gradients,
the linearized equations are given by
@t�� �
1

d
�Dk � �d	 1�D?��1� v0�0�r

2��	
�lv0�0

12d
r2��	

�l2v0�0�2d� 1�

24d�d� 2�
r2�r � t�; (11)

@tti �	Drti �
1

d� 2
��d� 1�D? �Dk�r

2ti �
2

d� 2
�Dk 	D?�@ir � t

	
�lv0�0

12d�d� 2�
�r2ti � 2@ir � t� �

�v0�0

d
@i���

�l2v0�0�2d� 1�

24d2�d� 2�
@ir2��: (12)
The local orientation is not a conserved variable and
decays at a rate �Dr. Both equations display the com-
petition of diffusive terms (/ Dr2) and pattern-forming
terms (/ 	�r2). The linear instability of the homoge-
neous state occurs when the pattern-forming terms domi-
nate. To linear order, the contribution from the rotational
current (proportional to �) vanishes and excluded volume
corrections appear only in the density equation.

To study the linear stability of the homogeneous state,
we expand the fields in Fourier components, ���r� �P

k �keik�r and t�r� �
P

k tke
ik�r, and separate tk in its

component longitudinal and transverse to k, namely tLk �
k̂k � tk and tTk � k̂k � tk, with k̂k � k=jkj. In d dimensions
there are d	 1 degenerate transverse modes describing
the decay of fluctuations in tTk, with rate

$T�k� � 	Dr 	
k2

d� 2

�
�d� 1�D? �Dk 	

�lv0�0

12d

�
:

(13)

There are two coupled modes describing the decay of
density and tLk fluctuations, given by

$��k� �
1
2fM11 �M22 �

������������������������������������������������������
�M11 	M22�

2 � 4M12M21

q
g;

(14)

with
M11 � 	
k2

d

�
�Dk � �d	 1�D?��1� v0�0� 	

�lv0�0

12

�
; M22 � 	Dr 	

k2

d� 2

�
3Dk � �d	 1�D? 	

�lv0�0

4d

�
;

M12 � ik3
�l2v0�0

24

2d� 1

d�d� 2�
; M21 � ik

�v0�0

d

�
1	

l2k2

24

2d� 1

d�d� 2�

�
: (15)
To discuss the stability of the homogeneous state, which is
controlled by the real part of the largest eigenvalue, we
need to specify the various diffusion constants. For dilute
solutions of long thin rods these are D? � Dk=2 � D=2
andDr � 6D=l2, withD � kBT ln�l=b�=�2�&l� and& the
solvent viscosity [13]. At higher density, the dynamics is
modified by the topological constraint that the filaments
cannot pass through each other, resulting in entangle-
ment. This strongly suppresses transverse and rotational
diffusion. Entanglement affects both the diffusive and the
active currents. For a first estimate of its role on the
dynamics of active solutions, we incorporate its effect
only on the diffusive currents and do so by replac-
ing the various diffusion constants by the values ob-
tained in the literature for the corresponding entangled
passive system, D? ’ D=f2�1� c?~��0�l=b�

d	2�2g and
Dr ’ 6D=fl2�1� cr~��0�l=b�

d	2�2g with cr;? constants of
order unity and Dk essentially unaffected by entangle-
ment [13,16].

It is instructive to first consider the case of � � 0,
where the two longitudinal modes are decoupled. The
decay rates of density and tLk fluctuations are given by
$� � M11 and $L � M22, respectively. At low density, $�
138102-3
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FIG. 2 (color online). Phase diagram for � � 0:4. For ~��0 <
�c � 0:826 and �� < ~�� < �s density fluctuations grow on all
scales, while orientational fluctuations are stable (‘‘bundled’’
state). For ~��0 < �c and �s < ~�� < �� short scale orientational
fluctuations are unstable, while density fluctuations remains
stable (‘‘oriented’’ state). All modes are unstable for ~�� >
max���; �s�. The insets show the modes for (a) ~�� � 2:95,
~��0 � 1:2 and (b) ~�� � 2, ~��0 � 2.
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exceeds $L for all k and becomes positive for ~�� � �l=
�8D� > ���~��0� on all length scales, with �� � �3=2� �
f1� 1=~��0 � 1=�2�1� ~��0��g, for d � 2 (c? � cr � 1). At
high density $L exceeds $� and orientational fluctuations
with k > k0 � �~�� 	 �L�

	1=2 ~��	3=2
0 become unstable for

~�� > �L�~��0� � �3=~��0��1� �1� ~��0�
	2=2�, while density

fluctuations can remain stable.
A finite value of ~�� � �l=�8D� has two effects on the

structure of the linear modes. First, the modes can
change from diffusive at small k to propagating above a
typical wave vector �~��	1=2, reflecting the oscillatory
behavior arising from the competition between bundling
(~��) and separation (~��). Second, ~�� stabilizes the homoge-
neous state at large length scales. As for � � 0, at low
density the homogeneous state becomes unstable via a
stationary instability which occurs where the modes
are diffusive at ~�� > �� for k < kc � ~��	1=2

0 �1� ~��0�
	1 �

��	 ���
1=2�40~��2 � ��� 	 ~�����L 	 ~����	1=2. Considera-

tion of the eigenvalue shows that at the largest scales
this instability driven by filament bundling (~��) is asso-
ciated with density fluctuations. At intermediate scales,
where the growth rate is largest, it describes coupled
density and orientational fluctuations, suggesting that
the ‘‘bundled’’ state may have a definite orientation on
short scales. At high density the behavior is controlled by
an oscillatory instability at ~�� > �s � �4�� � 3�L�=7
and k > k0c � ~��	1=2

0 �1� ~��0�
	1�~�� 	 �s�

	1=2, describing
the growth of orientational fluctuation. Notice that this
138102-4
instability should eventually be cut off at the smallest
length scales (where our continuum theory breaks down)
by excluded volume interactions. The phase diagram in
the �~��; ~��0� plane is shown in Fig. 2.

The critical values �� and �s diverge at low density
and decrease as ~��0 increases, indicating that entangle-
ment destabilizes the homogeneous state.

More work is needed to understand the nature of the
spatially inhomogeneous state. It will also be relatively
straightforward to include motor transport which is im-
portant for very processive motors and at low motor
densities. An inhomogeneous motor density may also be
required for the formation of stable asters and vortices at
low filament concentration. Finally, it will be interesting
to study the response of the motor/filament gel to shear.
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