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Decagonal Quasiferromagnetic Microstructure on the Penrose Tiling
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The stable magnetization configurations of a ferromagnet on a quasiperiodic tiling have been derived
theoretically. The magnetization configuration is investigated as a function of the ratio of the exchange
to the dipolar energy. The exchange coupling is assumed to decrease exponentially with the distance
between magnetic moments. It is demonstrated that for a weak exchange interaction the new structure,
the quasiferromagnetic decagonal configuration, corresponds to the minimum of the free energy. The
decagonal state represents a new class of frustrated systems where the degenerated ground state is
aperiodic and consists of two parts: ordered decagon rings and disordered spin-glass-like phase inside

the decagons.
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There is currently a broad interest in the understand-
ing of the magnetism of ultrathin magnetic structures
due to the wide variety of industrial applications [1].
The discovery of the rare-earth-based quasicrystals [2]
offers the unique opportunity to study the magnetic be-
havior of localized magnetic moments in magnets with
nonperiodic structure. The combination of the structural
quasiperiodicity with magnetic properties of ultrathin
films can lead to new physical phenomena. Hence, the
understanding of the micromagnetic ordering in such
objects is of high significance for the fundamental
physics of magnetic materials as well as for technological
applications.

The critical behavior of localized magnetic moments
on quasiperiodic tilings has been investigated theoreti-
cally [3]. In those studies emphasis has been put on
critical exponents and transition temperatures of Ising,
Potts, and XY models. In the investigations only the
short-range exchange interaction has been taken into
account. The long-range dipolar forces were not consid-
ered. On the other hand, due to the long-range character, a
relatively weak dipolar interaction can compete with the
strong but short-range exchange coupling [4]. The com-
petition can lead to a variety of magnetic configurations
in two-dimensional films [4]. In quasiperiodic magnets
the magnetic pattern will be different from that of peri-
odic crystals and disordered media.

The quasicrystals can be structurally ranked between
the periodic lattices and completely disordered media. In
contrast to periodic crystals, in quasicrystals the number
of nearest neighbors varies widely from one point to
another as in disordered matter. The Penrose tiling [5],
for example, has atoms with coordination number chang-
ing from 3 to 7. Hence, the energy per magnetic moment
also varies. Unlike the disordered media, however, this
variation exhibits a long-range orientational order, i.e.,
any finite section of a quasicrystal is reproduced within a
certain distance. In particular, fivefold symmetry, forbid-
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den in conventional crystallography, can be observed in
the diffraction patterns. Thus, the magnetic ordering in
quasicrystals should be different from the collinear mag-
netism of periodic crystals and from spin-glass-like be-
havior of the disordered media.

The dipolar system on a Penrose tiling is geometrically
frustrated; i.e., magnetic moments are unable to find an
orientation satisfying the interactions with all neighbors.
The frustration in quasicrystals is different from that of
periodic systems and that of disordered media. In highly
ordered magnets the frustration is uniform, i.e., equal for
all lattice points. In disordered materials the frustration is
random. In quasicrystals the change in coordination num-
ber leads to spatial alternation of the dipolar energy and,
thus, the degree of frustration. However, the nonuniform
magnetic frustration is not random. The nonuniform geo-
metrical frustration is the second important ingredi-
ent for the definition of the magnetic microstructure in
quasicrystals.

The exchange coupling in quasicrystals is also differ-
ent from that of their periodic counterparts. Atoms on
quasiperiodic tilings have not only a varying number of
neighbors but also several different nearest neighbor dis-
tances (Fig. 1). Accordingly, there are several different
values of the exchange force which can even change sign.
The existence of several exchange constants J can also
exert a significant influence on the microstructure of the
quasiperiodic magnets.

In summary, it is obvious that the varying number
of nearest neighbors, nonisotropic magnetic frustration,
and varying J-constants are important for the micromag-
netic ordering in quasiperiodic ultrathin films. From the
theoretical point of view no general approach has been
made up to now.

The aim of the present study is to achieve a general
spatially resolved description of the magnetic ordering
on the Penrose two-dimensional tiling. Since the Pen-
rose tiling is aperiodic, an analytical description of the
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FIG. 1. (a) A section of the Penrose tiling. The original
Penrose rhombic tiles and the decagonal tiles are indicated.
Two allowed overlapping of decagonal clusters are shown as A
and B. (b) The original Penrose rhombic tiles. Five nearest
neighbor distances (the sides and the diagonals of the rhom-
buses) and their lengths are given. 7 is the golden mean. The
two strongest exchange bonds according to two shortest nearest
neighbor distances are denoted as J and J'.

micromagnetic structure is hardly feasible. Therefore
Monte Carlo simulations have been performed to find
the equilibrium spin configurations at a given tempera-
ture. We present as well an original experimental dipolar
system made of 309 small magnets on the Penrose tiling.
In the Monte Carlo simulations the local ferromagnetic
exchange interaction and the long-range dipolar coupling
are considered. The experimental system represents a
pure dipolar model which corresponds to the numerical
simulations for zero exchange interaction. The effects of
the indirect exchange coupling are neglected in this study.
For a monolayer of three-dimensional vector spins S; the
Hamiltonian is given by

3{=—JZS1~S]
(ij)

S; -, (S;-r;)S; -1
+DZ( r3f—3 ,54, f), (1)
ij 1

ij r

where J is the exchange coupling constant and (i, j) refers
to the nearest neighbors, D the dipolar coupling parame-
ter, and r;; the vector between sites i and j.

The simulations have been carried out on finite Penrose
tilings with free boundary conditions. The samples are
squares or rectangles containing 400, 2500, and 10500
magnetic moments. We have also used circular areas to
cross-check our results. We have considered the dipolar
interaction of each magnetic moment with all the other
moments; i.e., we did not use a cutoff in calculating the
dipolar coupling. The Monte Carlo procedure is the same
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as described in a previous publication [6]. The experimen-
tal model concerns a 480 mm X 480 mm Penrose tiling
of magnets of 4 mm length separated by 30 mm. The
large distance between the magnets is chosen on purpose
to minimize multipolar terms that can trap the system
into metastable states [7]. The magnets are put onto non-
magnetic vertical axes and can rotate in the x, y plane.

In order to calculate the exchange energy the set of
nearest neighbors that are coupled via the short-range
interaction has to be defined. In periodic crystals the
exchange coupling between next nearest neighbors is
usually enough to ensure the magnetic order. In quasi-
crystals the situation is different. The pattern consists of
two rhombuses with edges of equal length a, one with
angles of 36° and 144° and the other with angles 72° and
108° (Fig. 1). The rhombic tiles are arranged without gaps
or overlaps according to matching rules [5]. The smallest
distance between neighbor sites is the short diagonal of
the tight rhombus (Fig. 1). The exchange interaction along
this diagonal J’ is nonpercolating; i.e., it can connect the
spins into only very small clusters of a maximal size
equal to three moments (see Fig. 1). Thus, it cannot ensure
the magnetic alignment of the whole sample. To get a
long-range magnetic order the exchange coupling along
the sides of the rhombuses J must be included (Fig. 1).
Usually, in theoretical studies of critical behavior
of quasiperiodic systems only J or J and J' interactions
are considered (longer bonds are neglected). With such a
treatment of bonds the lattice deviates from the original
Penrose tiling. In our study five different values of the
exchange constant, i.e., for the sides and all diagonals of
the rhombuses, have been considered. J has been taken to
be unity. The exchange interaction decreases exponen-
tially with the distance between magnetic moments.
The strength of the exchange interaction is defined as
Jij = Jexp(l — p;;), where p;; = r;;/a is the distance
between two neighboring moments normalized to the
length of the side of the rhombuses a. p;; takes the lengths
of the diagonals of the Penrose rhombuses. The shortest
diagonal has a length of p;; = 771 <1 with 7 as the
golden mean. Therefore J' = Jexp(l — 77'); ie, J' is
larger than J. Further interactions become weaker than
J with increasing distance as in that case p;; > 1.

Magnetic ordering depends on the ratio of exchange to
dipolar constant R = J/D and on the radius of the cutoff
in the exchange coupling (p). We have performed calcu-
lations for R varying between 0 (J = 0, pure dipolar
interactions) and 1000. The cutoff radius in the exchange
interaction can take one of four values: p = a, which
means that the exchange coupling is considered only
along sides and the shortest diagonal of the Penrose
rhombuses, p = 0.727ar, p = at, or p = 1.176a7. The
latter distances correspond to the exchange coupling
along the longer diagonals (see Fig. 1).

Figure 2 shows examples of relaxed micromagnetic
configurations for pure dipolar interactions obtained
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FIG. 2 (color). (a) Monte Carlo simulations. Top view of the
portion of the magnetic microstructure in a sample of finite
size for pure dipolar interaction, i.e., R = J/D = 0. The micro-
structure has been obtained for a square sample of about 10 500
vector spins on the Penrose tiling for D/kgT = 100. The spins
belonging to the perimeter of decagons (marked) form closed
chains. The chains overlap according to rules given in Fig. 1.
(b) Experimental model. The perspective view of the mag-
netic microstructure. The red arrows represent the orienta-
tion of dipolar moments of magnets fixed onto the nodes of
the Penrose tiling (rhombuses). The magnets can rotate in the
horizontal plane.

in the numerical [Fig. 2(a)] and in the experimental
[Fig. 2(b)] models. Both studies show that after different
relaxation procedures a micromagnetic pattern can have a
different local arrangement of dipoles. The total energy,
however, is always identical. Thus, the ground state in the
case of J = 0 is highly degenerate. All patterns, theoreti-
cal and experimental, have features in common. Magnetic
moments are ordered in circular loops. The diameters
of the loops are identical all over the sample. The loops
overlap. This overlapping is not accidental but follows
certain rules. Amazingly, these rules coincide with the
recently proposed ‘“‘decagonal model” of quasicrystals
[8-11].

In 1991 it was realized [8] that the planar Penrose tiling
can be generated using a single kind of tile, a decagon.
Every decagon consists of Penrose rhombuses. In contrast
to the conventional tiling description the decagonal
atomic clusters overlap, which means that they share
atoms with their neighbors. The overlapping rules have
been mathematically proven [9]. Only two types of the
overlap (A and B) are allowed [8]. Location of “A” and
“B” in a Penrose tiling are marked in Figs. 1 and 2(a).

The decagons can be easily recognized in the magnetic
microstructure [Figs. 2(a) and 2(b)]. In order to minimize
the dipolar energy the magnetic moments located on the
perimeter of a decagon form closed chains. The moments
are coplanar to the sides of the decagons. The overlapping
rings of magnetic moments can have the same or opposite
sense of rotation. The orientation of the moments that do
not belong to the perimeter of decagons is highly frus-
trated and varies from cluster to cluster. The overlapping
magnetic decagon chains form a quasiperiodic pattern.
In case of pure dipolar interaction the magnetic pattern is
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formed on the scale of the tiling constant; i.e., a micro-
scopic pattern is formed. In zero magnetic field this state
is degenerate and represents a manifold of quasiperiodic
spin configurations. All frustrated systems that have
been investigated have either a continuously degenerated,
periodic ground state (spins on a honeycomb, a kagome, a
triangular, a pyrochlore lattice [12]) or a completely dis-
ordered one (spin glasses). The superposition of both
types of frustration has not been reported yet. Thus, a
magnetic system on a Penrose tiling belongs to a new
class of frustrated systems where the degenerated ground
state is aperiodic and consists of two parts: ordered
decagon rings and disordered spin-glass-like phase inside
the decagons.

In the following we will discuss the situation where the
exchange coupling is switched on. In the quasiperiodic
Penrose tiling with high R, i.e., with the strong exchange
interaction, we find a single domain for all cutoff radii
p = a. It means that the exchange coupling acting along
the two shortest bonds (J and J') is enough to ensure the
ferromagnetic order. However, the degree of magnetic
order increases with increasing p. While the low tem-
perature magnetization is unity for the large exchange
cutoff radius p = 1.176ar, it is M = 0.975 for p = a
(R = 10%). Hence, the ferromagnetic order in quasicrys-
tals depends on the cutoff radius taken for the exchange
interaction. This can cause strong inhomogeneities of the
magnetization at the boundaries of laterally confined
magnet with quasiperiodic structure.

In finite samples on square and triangular lattices
single domain configurations have been found for high
R values while in-plane vortex structures dominate for
R =1 [13]. The vortex phase arises as a result of the
influence of the sample boundaries. The dipolar interac-
tion prefers to keep the magnetic moments in the film
plane and parallel to the sample edges to avoid formation
of magnetic poles. The exchange energy cares for the
parallel orientation of the neighboring moments. The
interplay of the different contributions leads to formation
of the vortex structure with dimensions of the sample
size. For the Penrose tiling the situation is completely
different. For all R-ratio and cutoff radii the macroscopic
vortex configuration is energetically unfavorable with
regard to the exchange interaction. When the dipolar
energy becomes strong enough to compete with the ex-
change energy (R <<0.5) the microscopic decagonal
pattern starts to form (Fig. 3). The decagonal pattern
differs from that of the pure dipolar case when exchange
interaction is effective. The strong exchange coupling
lifts the degeneracy of the decagonal magnetization con-
figuration found for J = 0. Magnetic moments are nearly
coplanar with the sides of the decagons as in the pure
dipolar case. The average magnetization, however, is
not zero; i.e., the magnetic moments have some preferen-
tial direction [Fig. 3(a)]. We call such magnetization
configuration quasiferromagnetic decagonal structure. A
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FIG. 3. (a) Top view of the portion of the quasiferromagnetic
spin configuration in a sample of finite size for p = 1.176art
and R = J/D = 5. The magnetic moments are nearly coplanar
to the sides of the decagons. The X component of the average
magnetization is My = 0.85. (b) An example of a planar spin
configuration in the region of transition from the single domain
to the decagonal structure for p = 1.176a7 and R = J/D =
0.4. The microstructures have been obtained for square and
disk-shaped samples of 400 and 10500 magnetic moments at
J/(kgT) = 100. The magnetic moments at the edges are ori-
ented mainly parallel to the boundary as in a conventional
vortex structure. However, only local vortices inside the dec-
agons exist.

further decrease of the ratio R leads to an increasing
influence of the dipolar interaction on the magnetic
microstructure. To minimize the magnetostatic energy
the dipoles form lines at the edges of the sample as in
conventional vortex structure [Fig. 3(b)]. However, a
macroscopic vortex does not form for any shape of the
sample. Small local vortices can appear only inside some
decagon rings [Fig. 3(b)].

Thus, the influence of the boundaries does not lead to
the formation of a macroscopic vortex in a Penrose tiling.
The reason for this phenomenon is the spatial variation of
the number of nearest neighbors and the exchange inter-
action strength. As the strength of the exchange interac-
tion decreases exponentially with the distance, J is much
stronger for neighbors with p;; < a, i.e., with J = 1, than
for neighbors with p;; > a. The magnetic moments with
pij = a are situated mainly on the perimeter of the
decagons. It is energetically more preferable to keep these
moments parallel than the other ones which causes the
appearance of decagonal chains and the local vortices.
The formation of macroscopic configurations is sup-
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pressed in favor of the microscopic quasiferromagnetic
pattern.

In conclusion, the stable magnetization configurations
of magnets on a quasiperiodic tiling have been derived
theoretically. In contrast to periodic lattices, the forma-
tion of macroscopic vortex configuration is suppressed
in favor of the microscopic quasiferromagnetic pattern.
For low R ratios a new microscopic structure, the quasi-
ferromagnetic decagonal pattern, represents the mini-
mum of the free energy. For pure dipolar interaction the
decagonal pattern represents a new class of frustrated
systems where the degenerated ground state is aperiodic
and consists of two parts: ordered decagon chains and
disordered spin-glass-like phase inside the decagons.

The authors thank J. Wille for preparation of the ex-
perimental model.

[1] See for a review H. P. Oepen and J. Kirschner, Curr. Opin.
Solid State Mater. Sci. 4, 217 (1999).
[2] Z. Luo, S. Zhang, Y. Tang, and D. Zhao, Scr. Metall.
Mater. 28, 1513 (1993); A. Niikura, A. P. Tsai, A. Inoue,
and T. Masumoto, Philos. Mag. Lett. 69, 351 (1994); A. P.
Tsai, A. Niikura, A. Inoue, T. Masumoto, Y. Nishida, K.
Tsuda, and M. Tanaka, Philos. Mag. Lett. 70, 169 (1994).
[3] See for a review U. Grimm and M. Baake, in The
Mathematics of Long-Range Aperiodic Order, edited by
R.V. Moody (Kluwer, Dordrecht, 1997), p. 199.
[4] See for a review K. De’Bell, A.B. Maclsaac, and J. P.
Whitehead, Rev. Mod. Phys. 72, 225 (2000).
[5] R. Penrose, Bull. Inst. Math. Appl. 10, 266 (1974).
[6] E.Y.Vedmedenko, H. P. Oepen, A. Ghazali, J.-C. S. Lévy,
and J. Kirschner, Phys. Rev. Lett. 84, 5884 (2000).
[7]1 E. Olive and P. Molho, Phys. Rev. B 58, 9238 (1998).
[8] S.E. Burkov, Phys. Rev. Lett. 67, 614 (1991).
[9] P. Gummelt, in Proceedings of the 5th International
Conference on Quasicrystals, edited by C. Janot and
R. Mosseri (World Scientific, Singapore, 1995), p. 84.
[10] P.J. Steinhardt and H.C. Jeong, Nature (London) 382,
433 (1996); H. C. Jeong and P.J. Steinhardt, Phys. Rev. B
55, 3520 (1997).
[11] K.W. Urban, Nature (London) 396, 14 (1998).
[12] P. Schiffer, Nature (London) 420, 35 (2002).
[13] E.Y. Vedmedenko, A. Ghazali, and J.-C.S. Lévy, Phys.
Rev. B 59, 3329 (1999); J. Sasaki and E Matsubara,
J. Phys. Soc. Jpn. 66, 2138 (1996).

137203-4



