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Two-Channel Kondo Effect in a Modified Single Electron Transistor
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We suggest a simple system of two electron droplets which should display two-channel Kondo
behavior at experimentally accessible temperatures. Stabilization of the two-channel Kondo fixed point
requires fine control of the electrochemical potential in each droplet, which can be achieved by
adjusting voltages on nearby gate electrodes. We study the conditions for obtaining this type of two-
channel Kondo behavior, discuss the experimentally observable consequences, and explore the gener-
alization to the multichannel Kondo case.
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FIG. 1. A proposed realization of the two-channel Kondo
(2CK) model. Two noninteracting leads (L and R) and a large
dot m are attached to a single-level small dot d. If dot d is
occupied by a single electron, it can flip its spin by virtually
hopping the electron onto either dot m or the leads, and then
returning an electron with opposite spin to dot d. Dotm and the
leads thus serve as the two distinct screening channels required
to produce the 2CK effect. Crucially, when kT is smaller than
the charging energy of dot m, Coulomb blockade blocks trans-
fer of electrons between the leads and dot m. Fine-tuning of the
voltage Vm (and/or V d) can equalize the coupling to the two
ties, due to intrinsic channel anisotropy [22]. Ralph re- channels, stabilizing the 2CK fixed point.
The single-channel Kondo (1CK) effect has been
studied for decades in metals with magnetic impurities
[1]. The same phenomenon has recently been observed in
the novel context of semiconductor nanostructures con-
taining no magnetic impurities: Here, an electron droplet
with a degenerate ground state assumes the role of a
magnetic impurity, and nearby electron reservoirs act as
the surrounding normal metal [2–7]. These semiconduc-
tor systems are extremely flexible. The electron droplet’s
shape and size are determined by lithographic patterning,
and its occupancy, energy levels, and coupling to external
reservoirs can be precisely measured, and even tuned
in situ using gate voltages. This unique tunability has
enabled the first precision measurements of Kondo tem-
perature as a function of system parameters, yielding an
excellent match to theory [4,8]. Experiments on semi-
conductor nanostructures have also accessed new re-
gimes, notably the low-temperature unitary limit [5],
Kondo effect out of equilibrium [9], and the single
mixed-valence impurity [4]. These experiments have
even introduced exotic varieties of Kondo effect never
seen in bulk studies, such as magnetic field-induced
Kondo [10,11] and two-impurity Kondo [12]. As with
conventional 1CK, each of these systems displays an
interesting many-body resonance. However, at very low
temperature T, we can describe each system simply as a
Fermi liquid superimposed with a resonance [13]; i.e.,
there is no non-Fermi liquid ground state.

Studying the two-channel Kondo (2CK) effect [14–18]
in semiconductor nanostructures could be even more in-
triguing. In 2CK, a twofold degenerate system such as a
local spin is antiferromagnetically coupled to not one, but
two independent electron reservoirs. Since the reservoirs
do not communicate, each attempts to screen the local
spin, resulting in overall overscreening. Unlike 1CK, this
system exhibits fascinating low-energy non-Fermi-liquid
behavior [19,20]. Yet there have been no conclusive ex-
perimental observations of 2CK [14,16,21]. Indeed, in
contrast to single-channel Kondo, the 2CK effect is not
likely to occur in ordinary metals with magnetic impuri-
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ported observation of 2CK, with local near-degeneracies
associated with atomic tunneling in a disordered metal
rather than the traditional spin. The observed behavior is
striking, but its physical origin has remained controver-
sial [16,21].

In this Letter, we argue that a simple configuration of
two electron droplets (see Fig. 1) attached to conducting
leads can exhibit 2CK correlations [19,20], retaining non-
Fermi-liquid (NFL) behavior at low temperature. The
relevant fixed point is stabilized at low temperature by
fine-tuning the voltage on just one gate electrode. Near a
2CK fixed point, quantities such as specific heat, entropy,
and spin susceptibility [20] behave differently than they
would in a Fermi liquid. The conductance through our
model system should exhibit an anomalous power-law
dependence on temperature, deviating from its T � 0
value as

����
T

p
[20] rather than T2. The simplicity of the
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structure and the ability to tune system parameters offer
hope for detailed study of the NFL realm, including
nonthermodynamic quantities such as transmission phase
[23], noise [24], pumping [25], and tunneling density of
states.

In our model, a small central electron droplet (denoted
by d) hosts a single level of energy "ds, which can be
empty, or occupied by electrons of either or both spin
directions s �"; # . Henceforth we refer to this droplet as
small dot d. The spin of the (singly occupied) small dot d
serves as the local degeneracy needed for 2CK. Con-
nected to small dot d by tunneling are two conducting
leads, plus an additional, much larger dot. In the large
dot, we neglect the discreteness of single-particle energy
levels, while retaining a finite Coulomb energy. Thus, this
dot behaves as a ‘‘Coulomb-interacting lead’’; we refer to
it as large dot m.

For a fixed number of electrons: nm on dot m and nd on
dot d, the electrostatic energy Enmnd � Enmnd �Vm;V d� is

Enmnd � U�nd �N d�
2 	 um�nd 	 �nm �N �2; (1)

where U � e2=�2~CCd� 
 um � e2=�2~CCm � c2�=~CCd�,
jejN d � cdV d, jejN � cmVm 	 cdc�=~CCmV d, and
� � c�=~CCd & 1. Here, ~CCm�d� is the total capacitance of
dot m�d�. See Fig. 1 for definitions of the other capaci-
tances. Note that the parameter N d controls the number
of electrons on the small dot while N controls the total
number of electrons on both dots combined. Since dotm is
large, we may assume that ~CCm is much larger than all
other capacitances.

To write down the full Hamiltonian H of the model
system, it is useful to perform a transformation on the
operators Lks and Rks for electrons in leads L and R,
respectively [26]. We define  ks � cos�Lks 	 sin�Rks,
�ks � cos�Rks � sin�Lks, tan� � VR=VL, and V �����������������������������
jVLj2 	 jVRj2

p
. Without loss of generality, we take the

coupling constants Vi, i � L;R;m, to be real. With these
definitions, the new effective lead  couples to the small
dot d, but the effective lead � does not couple:

H �
X

i��; ;m;ks

"iksi
y
ksiks 	

X
s

"dsd
y
s ds 	 Endnm

	 Vm
X
ks

my
ksds 	 V 

X
ks

 y
ksds 	 H:c:; (2)

To obtain a 2CK fixed point, we assume that V d is
tuned to make the average occupancy of the small dot
nd � 1, creating a local spin 1

2 . We further assume that
D;U 
 um, with D a cutoff of the order of the Fermi
energy [27]. With decreasing temperature, the system
evolves through several stages. Formally, we integrate
out the fast variables progressively in the renormalization
group (RG) sense. Details of this calculation will be
published elsewhere.

For kT > U, charge fluctuations on both the small and
large dots are possible. Haldane showed [8] that in this
regime only the level energy "d is renormalized, while
136602-2
the couplings to the leads remain the same. For kT & U,
we may perform the Schrieffer-Wolff transformation. In
this transformation charge fluctuations on the small dot
are eliminated, and the effect of virtual electron hopping
is simply to flip the spin on the small dot. Our Anderson-
like Hamiltonian is mapped onto a 1CK Hamiltonian. In
the present case, we have four possible spin flip events.
Two are diagonal processes in which an electron hops
onto dot d from lead  (large dot m) and then an elec-
tron with opposite spin hops off to the same lead  (large
dot m). Two are off-diagonal processes in which an elec-
tron hops onto dot d from lead  (large dot m) and then
an electron with opposite spin hops off to large dot m
(lead  ). (Four ‘‘hole’’ processes, in which an electron
first hops from the dot to lead  or large dot m, are also
possible). As T decreases further, so long as kT > um,
charge fluctuations on large dot m are allowed and the
system flows according to the single-channel Kondo RG
laws [8]. However, for kT < um, charge fluctuations on
the large dot are not possible and off-diagonal hopping
is suppressed. Diagonal spin flip events remain possible.
In this regime, we obtain the standard two-channel
Kondo model [20], with an additional free channel �
which decouples from the rest of the system [see also
Eq. (6)]. The diagonal exchange coupling constants (at
scale U) are

~JJmm�Vm;V d� � �m

�
1

E1
0 � E0

1

	
1

E�1
2 � E0

1

�
;

~JJ  �Vm;V d� � � 

�
1

E0
2 � E0

1

	
1

E0
0 � E0

1

�
:

(3)

Here �m� � � jVm� �j2�m� � is the rate of tunneling be-
tween dot d and dot m (effective lead  ); and Enmnd are
defined in Eq. (1). To obtain a 2CK fixed point, we tune
Vm and V d to make ~JJmm, the antiferromagnetic cou-
pling of dot d to dot m, equal to ~JJ  , the antiferromag-
netic coupling of dot d to the leads. Equation (3) and the
ratio  � �m=� define a curve in the Vm;V d plane. In
Fig. 2, we show these ‘‘2CK lines’’ for two different
values of  , both of order 1. On these lines, 2CK physics
should be realized at low T. We did not consider in Fig. 2
the renormalization of the parameters at scales below U,
which may modify the detailed shape of the curves.

The 2CK fixed point can be reached experimentally by
a three-step procedure: First, fix V d to give one electron
(or an odd number of electrons) in the small dot. Second,
tune  to roughly 1 by adjusting the individual tunneling
rates. No great precision is required in this step. Finally,
fine-tune Vm so that ~JJmm�Vm;V d� � ~JJ  �Vm;V d�. In
Fig. 2, this corresponds to tuning Vm until we hit a 2CK
line for our given value of  .

The current I between the left and right leads can be
measured as a function of T, and as a function of V LR,
the bias applied between leads L and R (see Fig. 1).
Drawing on the extensive literature of 2CK physics [14],
we can predict the qualitative behavior of the I-V LR
curve through the dot, for different values of the gate
136602-2
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voltages Vm, V d that scan the hexagon of Fig. 2. On the
2CK lines (see Fig. 2) in the unitary limit —T;V RL 
Kondo temperature TK — the differential conductance
G�T;V LR� � dI=dV LR should approach its limiting
value G�0; 0� as

2CK : G�0;0��G�T;V LR� /

�������������������������������
max�V LR;kT�

q
: (4a)

In the symmetric case VL � VR, we get G�0;0� �GK �
e2=h, half the maximal value of G�0;0� in the 1CK effect
[5,7]. In the part of the hexagon where ~JJmm > ~JJ  
(shaded, for  � 1:08), at low T the electrons in dot m
screen the spin of dot d, while the leads are decoupled. In
the RG sense ~JJ  flows to zero, so that dotm ‘‘wins’’ over
the leads and forms a 1CK state with dot d. In this case,
dI=dV LR is small and given by

large dot wins : G�T;V LR� / �max�V LR;kT��2: (4b)

In contrast, in the unshaded part of the hexagon in Fig. 2,
where ~JJmm < ~JJ  , dot m decouples from dot d at low T,
leaving the leads to form a 1CK resonance with dot d and
γ=1.08
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FIG. 2. The number of electrons on dots m and d are func-
tions of the gate voltages Vm and V d. Within the central
hexagon, dot d is singly occupied, a prerequisite for observation
of the Kondo effect. Curves superimposed on this hexagon
(‘‘2CK lines’’) map where in the Vm;V d plane the two-
channel Kondo (2CK) effect is realized for two different values
of the coupling ratio  � �m=� — each value gives rise to a
pair of disjoint curves. As illustrated for  � 1:08 (dashed
lines), these two curves divide the hexagon into three regions
with distinct low-temperature fixed points. On the curves, the
2CK effect is realized and the deviation of the interlead differ-
ential conductance from its T ! 0, V LR ! 0 limit G�0; 0� is
/

����������������������������
max�T;V LR�

p
[Eq. (4a)]. In the shaded regions at the top

left and bottom right, dot m ‘‘wins,’’ forming an exclusive 1CK
resonance with dot d, and driving G�T;V LR� close to zero
[Eq. (4b)]. By contrast, in the large unshaded region, leads L
and R ‘‘win’’ giving rise to familiar Fermi-liquid behavior
G�0; 0� �G�T;V LR� / �max�T;V LR��

2 [Eq. (4c)]. With in-
creasing  , the regions where dot m wins grow and merge,
while the region where the leads win shrinks and splits.
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leads win : G�0;0��G�T;V LR� / �max�V LR;kT��2;

(4c)
where G�0;0� � 2GK for VL � VR.

At sufficiently low temperature, the finite level spacing
�m in dot m will cut off the RG flow of the coupling
constants [28]. We cannot make �m infinitesimal as we
must retain a finite Coulomb blockade energy [29] um >
kT. However, the ratio between charging energy and level
spacing can be made large, allowing 2CK behavior to be
observed over an order of magnitude in temperature be-
fore the system finally flows to the 1CK fixed point.

The above discussion can be generalized to include
M� 1 large dots, resulting in an M-channel Kondo
(MCK) model, which may be possible (though challeng-
ing) to realize experimentally for M > 2.

To describe this system, we use the model

H �
X
aks

"aksa
y
ksaks 	

X
a

ua�na �N a�
2 	

X
s

"dd
y
s ds

	Und"nd# 	
X
ks

V�
aka

y
ksds 	 H:c: (5)

Here aks is the annihilation operator of an electron in
state k, with spin s and energy "aks on large dot a.
a � 1; . . . ;M, na �

P
ks a

y
ksaks, and the parameter N a

sets dot a equilibrium occupancy.
The physical role of the ua terms is clear: At low

temperatures they forbid processes in which charge is
ultimately transferred from one large dot to another. Spin
flip events — e.g., when an electron hops onto the small
dot and then an electron with opposite spin hops off the
small dot to the same large dot — remain possible and
under appropriate conditions lead to a MCK fixed point.

After integrating out energies larger then U [8], we
perform the Schrieffer-Wolff transformation [30] and find
that the second line of Eq. (5) is transformed toX

ab;kq

Jkqab�S
	s�kqab 	 S�s	kqab 	 2Szszkqab �; (6)

S� � dy
"�#�
d#�"�, 2Sz � dy" d" � dy# d#, s

�kq
ab � ayk"�#�bq#�"�, and

2szkqab � 1
2a

y
k"bq" � ayk#bq#. With Vaq � Vbk � V, and as-

suming that "a�b�qs � "a�b�F, where "a�b�F is the last empty
(occupied) level in dot a �b�, we find

Jkqab � Jab � jVj2
U	 u�b 	 u	a

�U	 "d 	 u�b ��u
	
a � "d�

; (7)

where u�p � up�1� 2�np �N p�� � "pF, p � a; b. For
�1=2<N p � np 	 ��� "pF�=�2up�< 1=2, there are
np electrons in dot p, where � is the electrochemical
potential of a reference reservoir. Particle-hole symmetry
may be absent in the large dots, so in general Jab � Jba.

At kT > maxfuabg, the system evolves according to
the 1CK RG flow, where uab � �u	a 	 u�b ��1� -ab�. At
kT <minfuabg, a � b, the off-diagonal processes de-
scribing transfer of an electron from dot b to dot a are
exponentially suppressed as Jab � J0abe

uab=�4kT�. Notice
that uaa � 0, since the charge on dot a is not changed
136602-3
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when an electron hops from dot a onto dot d and then
back to the same dot a. At kT <minfuabg, only the
diagonal terms of Jab do not flow to zero. Assuming
that we are not at a degeneracy point where uab � 0, an
easy condition to avoid, the RG equations are identical to
the MCK RG equations [22]. As in the case of classic
MCK, our NFL fixed point is unstable to channel anisot-
ropy. If one of the coupling constants is larger than the
others, the corresponding channel alone screens the local
spin and forms a Kondo resonance while the other chan-
nels are decoupled from the local spin. In our model, we
can tune all the N a to achieve Jaa � J for all a.

Gate voltages capacitively control the energy of the last
occupied level in each large dot, so excitations in each
large dot will be around a different Fermi energy. This
does not modify the RG equations, but does affect certain
physical properties such as the small dot density of states
at finite energies. A similar situation occurs in the dis-
cussion of 2CK in a dot out of equilibrium [15,18].

In conclusion, if a small dot is coupled to two (or more)
electron reservoirs, the Coulomb blockade can suppress
interreservoir charge transfer at low temperatures. Elec-
trostatic gates provide the tunability needed to stabilize a
2CK fixed point, resulting in observable NFL behavior.
Softer suppressions of interreservoir tunneling could also
work in place of Coulomb blockade. For example, the
reservoirs could be conductors with large impedance
[31], one-dimensional Luttinger liquids [32], or conduc-
tors with strongly interacting charge carriers. Finally,
while the channel asymmetry parameter is relevant in
the RG sense, for realistically well-matched channel
couplings we expect that the system will remain near
the 2CK fixed point, and will show NFL behavior, over a
wide range of temperatures.
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