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Quantum Monte Carlo Method using Phase-Free Random Walks with Slater Determinants
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We develop a quantum Monte Carlo method for many fermions using random walks in the space of
Slater determinants. An approximate approach is formulated with a trial wave function j�Ti to control
the phase problem. Using a plane-wave basis and nonlocal pseudopotentials, we apply the method to Be,
Si, and P atoms and dimers, and to bulk Si supercells. Single-determinant wave functions from density
functional theory calculations were used as j�Ti with no additional optimization. The calculated
binding energies of dimers and cohesive energy of bulk Si are in excellent agreement with experiments
and are comparable to the best existing theoretical results.
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nentially. This is analogous to but more severe than the
fermion sign problem with real AF [8,9] or in real-space
methods [10]. No satisfactory, general approach exists to

must not be orthogonal to j�Gi, and we will assume
that it is of the form of a single determinant or a linear
combination of determinants. The time step 
 is chosen to
Quantum Monte Carlo (QMC) methods based on aux-
iliary fields (AF) are used in areas spanning condensed
matter physics, nuclear physics, and quantum chemistry.
These methods [1,2] allow essentially exact calculations
of ground-state and finite-temperature equilibrium prop-
erties of interacting many-fermion systems. The required
CPU time scales in principle as a power law with system
size, and the methods have been applied to study a variety
of problems including the Hubbard model, nuclear shell
models, and molecular electronic structure. The central
idea of these methods is to write the imaginary-time
propagator of a many-body system with two-body inter-
actions in terms of propagators for independent particles
interacting with external AF. Averaging over different AF
configurations is then performed by Monte Carlo (MC)
techniques.

QMC methods with auxiliary fields have several ap-
pealing features. For example, they allow one to choose
any one-particle basis suitable for the problem, and to
fully take advantage of well-established techniques to
treat independent particles. Given the remarkable de-
velopment and success of the latter [3], it is clearly
desirable to have a QMC method that can use exactly
the same machinery and systematically include correla-
tion effects by simply building stochastic ensembles of
the independent-particle solutions. Vigorous attempts
have been made from several fields to explore this possi-
bility [4–7].

A significant hurdle exists, however: Except for special
cases (e.g., Hubbard), the two-body interactions will re-
quire auxiliary fields that are complex. As a result, the
single-particle orbitals become complex, and the MC
averaging over AF configurations becomes an integration
over complex variables in many dimensions. A phase
problem thus occurs which ultimately defeats the alge-
braic scaling of MC and makes the method scale expo-
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control the phase problem. As a result, only small systems
or special forms of interactions can be treated.

In this Letter, we address this problem. We develop a
method for many fermions that allows the use of any one-
particle basis. It projects out the ground state by random
walks in the space of Slater determinants. The phase
problem is eliminated with an approximation that relies
on a trial wave function j�Ti. We apply the method to
electronic systems using a plane-wave basis and nonlocal
pseudopotentials, which can be implemented straightfor-
wardly in this method. We calculate the binding energies
of Be2, Si2, and P2, and the cohesive energy of bulk Si
using fcc supercells consisting of up to 54 atoms (216
electrons). This represents the first application of AF-
based QMC to solids. Our results are in excellent agree-
ment with experiments and are comparable to or better
than the best existing theoretical results. Particularly
worth noting is that our results were obtained with trial
wave functions that are single determinants formed by
orbitals from density functional theory (DFT) calcula-
tions [with the local density approximation (LDA)], with
no additional parameters or optimization.

The Hamiltonian for a many-fermion system with
two-body interactions can be written in any one-particle
basis in the general form

ĤH � ĤH1 � ĤH2 �
XN
i;j

Tijc
y
i cj �

1

2

XN
i;j;k;l

Vijlkc
y
i c

y
j ckcl; (1)

where N is the size of the chosen one-particle basis, and
cyi and ci are the corresponding creation and annihilation
operators. Both the one-body (Tij) and two-body matrix
elements (Vijlk) are known.

To obtain the ground state j�Gi of ĤH , QMC methods
use the imaginary-time propagator e�
ĤH acting on a trial
wave function j�Ti: limn!1	e�
ĤH 
nj�Ti / j�Gi. j�Ti
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be small enough so that ĤH1 and ĤH2 in the propagator can
be accurately separated with the Trotter decomposition.

The action on a determinant of the propagator e�
ĤH1 ,
which is the exponential of a one-body operator, simply
yields another determinant. Any two-body operator can
be written as a quadratic form of one-body operators:
ĤH2 � � 1

2

P
� ��v̂v

2
�, where �� is a real number and v̂v�

is a one-body operator. Thus, the two-body propagator
e�
ĤH2 can be expressed as an integral of one-body propa-
gators of the same form as e�
ĤH1 , via the Hubbard-
Stratonovich (HS) transformation [11]:

e�
ĤH2 �
Y
�
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Introducing vector representations � 
 f�1; �2; . . .g and
v̂v � f

������
�1

p
v̂v1;

������
�2

p
v̂v2; . . .g, we have the desired form

e�
ĤH �
Z
P	�
B	�
 d�; (3)

where P	�
 is the normal distribution in Eq. (2), and

B	�
 
 e�
ĤH1=2e
��



p
��v̂ve�
ĤH1=2 (4)

is a one-body propagator.
The imaginary-time propagation thus requires evaluat-

ing the multidimensional integral in Eq. (3) over time
slices n and the corresponding auxiliary fields. MC tech-
niques are the only way to evaluate such integrals effi-
ciently.We use a random walk approach [9]. In each step, a
walker j�i, which is a single Slater determinant, is
propagated to a new position j�0i: j�0	�
i � B	�
j�i,
where � is a random variable sampled from P	�
. After a
sufficient number of steps (iterations), the ensemble of
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FIG. 1. Illustration of the phase problem and constraints to
control it. The total correlation energy (in Ry) of an unpolar-
ized two-electron Jellium system (interacting electrons with a
uniform neutralizing background) is shown as a function of
projection time � � n
, with 
 � 0:01 Ry�1. Electrons are in a
periodic cell, with density rs � 10. The number of plane waves
is N � 19. Simple generalization of the constraint that worked
well for real determinants leads to poor results. The new
method agrees well with exact diagonalization.
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random walkers is a MC representation of the ground-
state wave function: j�Gi �

: P
�0 j�0i.

The one-body operators v̂v are generally complex, since
the �� cannot all be made positive in Eq. (2) [12]. As a
result, the orbitals in j�i will become complex as the
projection proceeds, and the statistical fluctuations in the
MC representation of j�Gi increase exponentially with
projection time � 
 n
. This is the phase problem re-
ferred to earlier. It is of the same origin as the sign
problem that occurs when B	�
 is real. The phase problem
is more severe, however, because for each j�i, instead of a
�j�i and �j�i symmetry [9], there is now an infinite set
fei�j�ig [� 2 �0; 2�
] from which the random walk can-
not distinguish. At large �, the phase of each j�i becomes
random, and the MC representation of j�Gi becomes
dominated by noise. This problem is generic, and the
same analysis would apply if we had chosen, instead of
the random walk, the standard AF QMC sampling ap-
proach [2]. In Fig. 1, the curve labeled ‘‘free projection’’
illustrates the phase problem.

Existing fixed-node-type approximations have often
worked very well to control the sign/phase problem in
real space [13,14] or in determinant space when the
propagator is real [9]. The phase problem here is unique
because not only do the determinants acquire overall
phases, but the internal structures of their orbitals be-
come complex. The real-space analogy would be to have
walkers whose coordinates become complex. Straight-
forward generalization of existing approaches are thus
ineffective. For example, similar to the constrained
path approximation [9], we could impose the condition
Reh�T j�i > 0. This does not work well, as shown in
Fig. 1 (‘‘simple constraint’’). Several variants were tested
and they gave similarly poor results [15].

To formulate a new method that can better separate the
overall phase from the determinant, we first borrow from
the idea of importance sampling [16], although our choice
of the so-called importance function, h�Tj�i, is actually
complex. We modify Eq. (3) to obtain the following new
propagator for j�i:

Z
h�T j�

0	�� ���
iP	�� ���
B	�� ���

1

h�T j�i
d�; (5)

where we have included a constant shift [5] ��� in the
integral in Eq. (3), which does not affect the equality.
Equation (5) can be rewritten as

Z
P	�
W	�;�
B	�� ���
 d�; (6)

where

W	�;�
 

h�Tj�0	�� ���
i

h�T j�i
e�� ����	 ���� ���=2
: (7)

The new propagator in Eq. (6) defines a new random
walk. In each step a ��� is determined for each walker j�i,
and the walker is propagated to j�0i by B	�� ���
:
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TABLE I. Binding energies of Be2, Si2, and P2. The
molecules were calculated at the experimental equilibrium
bond lengths of 4.63, 4.24, and 3.58 (in aB), respectively.
Energies are in eV. Statistical errors are in the last digits and
in parentheses.

Be2 Si2 P2

LDA 0.53 3.879 5.97
QMC 0.07(2) 3.12(8) 5.09(10)
Experiment 0.11(1) 3.21(13) 5.03(2)
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j�0	�� ���
i � e�
ĤH1=2e
��



p
	�� ���
�v̂ve�
ĤH1=2j�i; (8)

where � is again sampled from P	�
. W	�;�
 is a c
number which can be accounted for by having every
walker carry an overall weight factor and updating
them according to w�0 � W	�;�
w�. Formally, the MC
representation of j�Gi in the new random walk is

j�Gi �
: X

�0

w�0

j�0i

h�T j�0i
: (9)

The optimal choice of ��� is determined by minimizing
the fluctuation of W	�;�
 with respect to �. This can be
done by, for example, substituting Eq. (8) into Eq. (7) and
setting @ lnW=@� � 0. To O	

���



p

, we obtain

��� � �
���



p h�Tjv̂vj�i
h�T j�i

: (10)

With this choice we can simplify W by considering lnW
again. Using Eqs. (7) and (8), we can expand lnW in 
,
keeping terms up to O	

. As expected, the leading
�-dependent term, which is of O	

���



p

, vanishes and the

only remaining term is proportional to �2. Noting that
h�2i � 1, we arrive at the following approximate expres-
sion by integrating over �:

W	�;�
 �
:
exp

�
�


h�T jĤHj�i
h�T j�i

	

 exp��
EL	�
�; (11)

where the term EL parallels the local energy in real-space
QMC methods. Both EL and the shift ��� in Eq. (10) are
independent of any overall phase factor of j�i.

The weight of the walker in the new random walk is
determined by EL. In the limit of an exact j�Ti, EL is a
real constant, and the weight of each walker remains real.
The so-called mixed estimate for the energy is phaseless:

EG �
h�T jĤHj�Gi

h�T j�Gi
�
:
P
�0 w�0EL	�0
P

�0 w�0

: (12)

With a general j�Ti which is not exact, a natural approxi-
mation is to replace EL in Eqs. (11) and (12) by its real
part, ReEL.We have thus obtained a phaseless formalism
for the random walk, with real and positive weights in
Eqs. (9) and (12).

The phase problem is still not completely eliminated,
however. The random walk is ‘‘rotationally invariant’’ in
the complex plane defined by h�T j�i. That is, the over-
laps of the walkers with the trial function evolve continu-
ously during the random walk through a diffusionlike
process. At large time, the walkers will populate the
complex plane symmetrically, independent of their initial
positions. This means that at the origin, where h�T j�i �
0, there will be a finite density of walkers. Near the origin
the local energy EL	�
 diverges, which causes diverging
fluctuations in the weights of walkers. Thus, although the
phaseless formalism removes the explicit dependence on
the phase of the determinant, the phase problem is still
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present because of the ‘‘two-dimensional’’ nature of the
random walk in the complex plane. To break this rota-
tional invariance, we make an additional approximation.
We project the random walk to ‘‘one dimension’’ by
multiplying the weight of each walker in each step by
maxf0; cos	��
g, where �� is the phase of h�T j�0i=
h�Tj�i. This projection ensures that the density of
walkers vanishes at the origin. Note that, when v̂v is
real, the projection has no effect as �� � 0. [In fact,
the shift in Eq. (10) is real in that case, and the method
reduces to the constrained path Monte Carlo method [9].]

As Fig. 1 illustrates, the new method leads to a large
improvement. The ground-state energy computed with
Eq. (12) is approximate and is not variational. The sys-
tematic and statistical errors depend on j�Ti, vanishing
when j�Ti is exact. We apply the method to Be, Si, and P
atoms and dimers, and to bulk Si supercells. The Be2�,
Si4�, and P5� ions are represented by LDA Kleinman-
Bylander (KB) nonlocal pseudopotentials (VNL) [17]. We
use periodic boundary conditions and a plane-wave basis
with a kinetic energy cutoff Ecut. Calculations involving v̂v
and the local part of the pseudopotential are efficiently
handled using fast Fourier transforms. The separable KB
form of VNL makes its application as efficient as in LDA
codes [15]. Our j�Ti is a single determinant of LDA
orbitals generated using ABINIT [18].

In the atom and dimer calculations, periodic cells of
size 15� 15� 20, 19� 19� 19, and 14� 14� 18 (in
a3B) were used for Be, Si, and P, respectively, with corre-
sponding Ecut of 25, 12.25, and 36 (in Ry) (12 875 plane
waves for P and P2). The cell size and Ecut were chosen
such that the resulting errors, systematically analyzed
with LDA, were much smaller than the expected QMC
statistical errors. The LDA estimates were then confirmed
with QMC calculations for selected cases. Table I shows
dimer binding energies. Be2 is challenging because of the
small binding energy and near 2s and 2p degeneracies. A
recent pseudopotential AF QMC calculation gave
0.0(2) eV [19], while diffusion Monte Carlo (DMC)
with multideterminant trial wave functions gave
0.05(3) eV [20]. P2 is a difficult case for DMC. With
single-determinant (times Jastrow) trial wave functions,
pseudopotential fixed-node DMC gave 4.68(1) eV; multi-
determinant trial wave functions improved the binding
energy by about 0.15 eV [21]. These are thus stringent
136401-3



TABLE II. Cohesive energy of bulk Si. Calculations are done
for fcc supercells with 2, 16, and 54 atoms, at aexp � 5:43 !A.
QMC at 1 is from 54 atoms and includes two finite-size
corrections: (i) an independent-particle correction of 0.311 eV
from LDA and (ii) an additional Coulomb correction of
�0:174 eV from Ref. [23,24]. A zero-point energy correction
of �0:061 eV was also added to the calculated results at 1.
Energies are in eV=atom. Statistical errors are in parentheses.

2 16 54 1

LDA �3:962 3.836 4.836 5.086
QMC �1:95	5
 3.79(4) 4.51(3) 4.59(3)
Experiment 4.62(8)
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tests. Our results are comparable to or better than the best
existing QMC results, and are in good agreement with
experimental values (from [19,21,22], and references
therein).

Bulk Si results using fcc supercells with 2, 16, 54 atoms
(5209 plane waves) are shown in Table II. Our calculation
for 54 atoms took several days on 20 Compaq Alpha
667 MHz processors. For the bulk cohesive energy, we
first included a correction for the independent-particle
finite-size error from the LDA results. We then corrected
for the remaining Coulomb finite-size error [25] using
the results of Kent et al. [23]. Our result is again in
excellent agreement with the experimental value (from
Ref. [13]). It also compares very well with the result of a
recent fixed-node DMC calculation [26], which also used
a 54-atom supercell and gave 4.63(2) eV per atom after
similar finite-size and zero-point energy corrections.

Our method provides a general framework for treat-
ing two-body interactions that can be useful in two com-
plementary approaches to many-fermion systems. For
ab initio calculations, it provides a QMC approach that
can be implemented using the same machinery as in tra-
ditional independent-particle methods. For model Hamil-
tonians, where AF-based QMC has been a major tool, it
allows interactions beyond the simple Hubbard type, so
more realistic models can be studied. Here we have dem-
onstrated the former. Our approach eliminated the prob-
lem with nonlocal pseudopotentials, which in standard
real-space DMC has required, in addition to fixed-node, a
localization approximation [27] that depends on not just
the nodes but the overall quality of j�Ti. This has in-
creased the demand on the accuracy of j�Ti, and a large
number of variational parameters have often been needed
[13]. Without an exact solution to the sign/phase problem,
reducing the reliance on trial wave functions is clearly of
key importance to increasing the predictive power of
QMC. Our test results, given the simplicity of j�Ti, are
therefore especially encouraging.

In conclusion, we have described a method for ground-
state QMC calculations that allows the use of any one-
particle basis. The method is general and applies to any
136401-4
Hamiltonian of the form in Eq. (1). It provides an ap-
proximate way to control the phase problem in all
AF-based QMC methods, while allowing many of their
advantages to be retained that lead to their applications
spanning several areas. We have shown that the method
can give accurate results for systems from an atom to a
large supercell, using a simple trial wave function.
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