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Interface Localization-Delocalization in a Double Wedge: A New Universality Class
with Strong Fluctuations and Anisotropic Scaling
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Using Monte Carlo simulations and finite-size scaling methods we study ‘‘wetting’’ in Ising systems
in a L� L� Ly pore with quadratic cross section. Antisymmetric surface fields Hs act on the free
L� Ly surfaces of the opposing wedges, and periodic boundary conditions are applied along the y
direction. In the limit L ! 1, Ly=L3 � const, the system exhibits a new type of phase transition, which
is the analog of the ‘‘filling transition’’ that occurs in a single wedge. It is characterized by critical
exponents � � 3=4, � � 0, and � � 5=4 for the specific heat, order parameter, and susceptibility,
respectively.
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nonwet, namely, when the contact angle of a droplet
��T� � �. Based on an approximate treatment of this

free surfaces and �Hs on the other two L� Ly surfaces.
The interesting and practically relevant case of a single
The presence of external boundaries may have profound
consequences on coexisting (fluid) phases: in a semi-
infinite system bounded by one wall, wetting transitions
of first or second order may occur. Understanding these
transitions has been a challenging problem [1–3]. If the
system is a thin film, it is no longer possible to form
(infinitely thick) wetting layers. Depending on the char-
acter of the boundary conditions at the walls, interesting
phase transitions may occur: if both walls favor the same
phase, phase coexistence is shifted relative to the value of
the control parameter at which it occurs in the bulk
(‘‘capillary condensation’’ [3–5]). If both walls favor
different phases, an interface is stabilized between the
coexisting phases in the film. This interface runs parallel
to the walls. It may be bound either to the left or to the
right wall, and the two states coexist laterally. Upon
increasing the temperature an interface localization-
delocalization transition occurs at Tc to a state where
the interface freely fluctuates around the center of the
film and the system is laterally homogeneous. The tem-
perature Tc depends on the strength of the surface inter-
actions Hs and it converges towards the wetting transi-
tion temperature Tw�Hs� as the film thickness Ly diverges.
The critical behavior of this interface localization-
delocalization [6–9] and the general aspects of the inter-
play between phase separation and wetting in thin films
[3,10] have found abiding interest. In both cases—capil-
lary condensation and interface localization-delocaliza-
tion—the transition belongs to the two dimensional Ising
universality class.

A particularly intriguing variation of these phenomena
is found when one considers wetting in a wedge, where
two surfaces meet under an angle �� 2�. Then, a
‘‘wedge filling’’ transition [11–14] occurs at a tempera-
ture Tf�Hs� where a planar surface (� � 0) still would be
0031-9007=03=90(13)=136101(4)$20.00 
problem using an effective interface Hamiltonian, Parry
et al. [15] have proposed that this transition is generically
not described by mean field theory: the filling transition
in a wedge is related to the strong fluctuation regime of
critical wetting, for surface potentials W�l� that decay
sufficiently fast with the distance l of the interface from
the surface [W�l� � l�p with p > 4 or short range forces].
Parry et al. [15] also suggest that critical filling can occur
even if the associated wetting transition of a planar sur-
face is first order. This opens the way to observe critical
wetting behavior—a phenomenon long sought and con-
troversial [16–18]. Specifically, Parry and co-workers
predicted the distance l0 of the interface from the bottom
of a wedge to diverge as l0 � �Tf � T���s with �s � 1=4.
Correlations along the wedge and in the other two direc-
tions are characterized by diverging correlation lengths
�y � �Tf � T���y and �x � �? � �Tf � T���? with ex-
ponents �y � 3=4 and �? � 1=4, respectively. Experi-
ments [19] on complete filling provided evidence
for the unusual effects induced by the wedge geometry
[15], but the intriguing predictions for the strong critical
fluctuations at the filling transition have not been con-
firmed by experiments or simulations.

We shall present a test of these predictions by Parry
et al. [15] using Monte Carlo simulations of an Ising
model in the double wedge geometry sketched in Fig. 1.
We use a simple cubic lattice with an L� L� Ly ge-
ometry. There are four free L� Ly surfaces and periodic
boundary conditions are applied along the third direc-
tion. Thus, the two opposed wedges create a pore with a
square cross section. We use, however, a special boundary
condition in the simulations. As for the study of the
wetting and interface localization-delocalization transi-
tion it is advantageous to employ antisymmetric surface
fields: We choose fields 
Hs on two neighboring L� Ly
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FIG. 1 (color online). Sketch of the antisymmetric double
wedge Ising lattice composed of the two opposing wedges
W1 and W2. The sign of the surface magnetic fields �Hs along
the boundaries is indicated. l0 denotes the position of the
interface from one corner.
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FIG. 2 (color online). Absolute value of the magnetization
plotted versus surface field Hs and several choices of L and Ly,
keeping the ‘‘aspect ratio’’ Ly=L3 approximately constant. The
inset shows the cumulant UL;Ly . Typical configurations are
sketched.
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wedge formed by two different surfaces (corresponding
to the left and right corners of Fig. 1) has been studied
[20], but we do not expect details of the interactions at
those two corners to influence the universal behavior in
the double wedge geometry.

The Ising model in this antisymmetric double wedge
geometry is described by the Hamiltonian:

H �� J
X

hi;jibulk

SiSj � Js
X

hi;ji2W1 [W2

SiSj

�Hs

X

i2W1

Si 
Hs

X

i2W2

Si; (1)

where J denotes the exchange constant of the Ising model
in the bulk and the spin variables Si can take values �1.
The interactions in the surface planes are weakened
(Js � J=2) to avoid the proximity of tricritical wetting
behavior [16]. Under these conditions the semi-infinite
system exhibits a second order wetting transition. Rather
than varying the temperature T, we bring about the filling
of the wedge by increasing the strength of the surface
field Hs. This has the advantage that all bulk quantities
(e.g., magnetizationmb or bulk correlation length) remain
constant. The temperature is fixed to kBT=J � 4 (i.e.,
T � 0:887Tbulk

c ). It is high enough to avoid layering
[21]. We vary the linear dimensions L; Ly but we keep
the ratio Ly=L�y=�? � Ly=L3 � 0:0031 approximately
constant. If we measure L and Ly in units of the correla-
tion lengths �? and �y, respectively, the ‘‘generalized
aspect ratio’’ will remain constant and finite-size round-
ing will set in simultaneously in all directions [22]. We
shall verify a posteriori the ratio of the critical exponents
for the correlation lengths.

We demonstrate that in this model the predictions of
Parry et al. [15] can indeed be confirmed. Moreover,
136101-2
keeping the generalized aspect ratio constant we obtain
a new type of ‘‘bulk’’ transition of the Ising model,
although the filling transition in a macroscopic wedge
amounts to a singularity of the surface excess free
energy of the system only: At this wedge localization-
delocalization transition, occurring at the critical sur-
face field Hsc, the average total magnetization m �P

i Si=�L
2Ly� jumps from zero [for Hs > Hsc�T� or T >

Tf�Hs�] to a finite value which is of the order of the
spontaneous magnetization �mb in the bulk. This tran-
sition goes along with a divergence of the total suscepti-
bility, and we argue that it constitutes a new universality
class of second order transitions and relates the concomi-
tant critical exponents to the critical exponents of wedge
filling. Our findings exemplify the general principle that
in circumstances where a broken symmetry occurs the
state of the system is sensitive to boundary conditions,
even if the boundaries are an infinite distance apart.

Figure 2 presents the absolute value of the average total
magnetization hjmji. For small values of Hs a single
wedge is not filled. In a double wedge, the interface is
bound to one of the two wedges and the magnetiza-
tion adopts large positive or negative values. Upon in-
creasing the surface fields we encounter a wedge interface
localization-delocalization transition at which the mag-
netization in a finite-size system rapidly decreases. At
large values of the surface fields the interface fluctuates
around the diagonal which joins the two wedges and the
magnetization is small. The larger the system the steeper
the decrease of the magnetization at the transition. In
sharp contrast to a transition of the Ising universality
class, the magnetization curves for different system sizes
intersect at a rather well-defined value of the surface field
136101-2
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Hsc � 0:72�1�. In the inset we locate the surface field
at which the transition occurs using the intersection of
the cumulant UL;Ly � 1� hm4i=�3hm2i2�. The intersec-
tion of the cumulants locates the transition at a surface
field which agrees (within the statistical error) with the
intersection point of the magnetization curves.

In Fig. 3 we show the fluctuation hm2i � hjmji2 of the
magnetization. At Hsc the fluctuation has a peak, which
distinctly sharpens up when L ! 1. The half-width
� behaves as �� L�1=�

y � L�4=3, cf. inset of Fig. 3(a).
Phenomenologically, we can relate this unusual critical

behavior to the strong fluctuation effects of the filling
transition in a single wedge: The interface localization-
delocalization transition in a double wedge occurs when a
single wedge is filled to a height l0 such that the fluctua-
tions of the height  l0 are comparable to the distance
of the interface from the diagonal that divides the two
wedges, i.e., L=

���
2

p
� l0 �  l0. Parry and co-workers [15]
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FIG. 3 (color online). (a) Magnetization fluctuation plotted
versus Hs for the same choice of parameters as in Fig. 2.
The inset shows a test of the power law for the half-width
�� L

�1=�y
y � L�4=3

y . (b) Scaling plot of the magnetization
fluctuation versus jHsc �HsjL

1=�y
y . The broken line has a slope

of �1:243, close to the predicted value �� � �5=4.
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predict l0 � t��s and  l0 � �? � t��? . The fact that
�? � �s implies that l0 and  l0 are of order L at the
transition, i.e., neither the position nor the widths of the
peaks of the distribution of the scaled distance l0=L
of the interface from one corner depend on the system
size L. Assuming that magnetization fluctuations at Hsc
are predominantly caused by fluctuations in the location
of the interface, the peaks of the distribution P�m� of the
magnetization also do not depend on the system size L.
More generally, we predict for the anisotropic scaling
behavior of the probability distribution of the magneti-
zation:

P�m� � ~PP�m;Ly=�y; L=�?� � ~PP�m;Lyt�y ; Lt�?�

� ~PP�m;L
1=�y
y t; Ly=L�y=�?�; (2)

where ~PP is a scaling function, t � jHsc �Hsj=Hs denotes
the reduced distance from the critical point, and ampli-
tude prefactors of order unity are ignored. Note that
for � > 0 we would have an argument L

�=�y
y m instead

of m and a power law prefactor L
�=�y
y in Eq. (2).

At fixed generalized aspect ratio Ly=L
�y=�? , Eq. (2)

implies that all moments of the magnetization exhibit a
scaling behavior of the form

hjmjki � ~ffk�L
1=�y
y t� � ~ffk�L

4=3
y t� 8 k; (3)

where ~ffk are scaling functions, and the same scaling
behavior holds also for the cumulant UL;Ly . The special
case k � 1 explains the crossing of the magnetization
curves at t � 0. As this intersection involves lower mo-
ments of the magnetization than the cumulant, it yields an
accurate estimate of the transition point for this specific
universality class. Figure 3 shows a direct verification of
the scaling behavior suggested in Eq. (3) for k � 2.

The temperature dependence of the susceptibility #
can be obtained as follows:

kBT# �

P
i;jhSiSji

L2Ly
�m2

b�y�x�? � t��y�2�? : (4)

Note that spins Sj inside the volume �y�x�? � �y�
2
?

around spin Si are correlated. All spins Si of the
wedge contribute equally (in a scaling sense), because
the fluctuations of the interface position are on the scale
of the wedge extension L itself. Thus, the critical expo-
nent of the susceptibility is � � �y 
 2�? � 5=4. This
critical exponent is straightforwardly read off from the
slope of the broken line in Fig. 3(b). This value is also
consistent with the scaling of the moments of the mag-
netization:

kBT# � LyL
2�hm2i � hjmji2� � LyL

2~ff2�Lyt
�y ; Lt�?�

� t��y�2�? � t��; (5)

where we have chosen the powers of the anisotropic
scaling variables Lyt�y and Lt�? such that they cancel
136101-3
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FIG. 4. Probability distribution of the magnetization at the
critical field as a function of the system size.
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the system size dependence. These critical exponents,
� � 0 and � � 5=4, comply with the anisotropic hyper-
scaling relation [23] �
 2� � �d � 1��? 
 �y �
2 � �1=4� 
 3=4 � 5=4. The thermodynamic scaling
2� � � �
 2� then implies � � 3=4 for the specific
heat exponent.

A direct test of the scaling of the distribution function
in Eq. (2) at the transition is presented in Fig. 4. Without
any L-dependent prefactor the distributions for several
system sizes approach a single master curve. Because of
corrections to scaling the peaks of P�m� for the small
system sizes shift outwards (which would correspond
formally to �< 0), but for Ly � 200 the peak positions
have almost reached �mb; they cannot shift much farther
outwards and P�m� is close to the scaling limit.

This scaling behavior strongly supports our predic-
tions. It is important to note that the shape of the distri-
bution depends on the generalized aspect ratio Ly=L�y=�? ;
consequently the scaling behavior not only confirms the
value � � 0 but also the ratio �y=�? � 3. Unlike second
order transitions in the Ising universality class (� > 0)
the peaks of the distribution at the transition do not
approach each other as we increase the system size; how-
ever, the width of the peaks does not become narrower as
they would at a first order transition.

In summary, we have carried out the first studies of
the phase transition of Ising models in a double wedge
geometry and have shown that a very unconventional
critical behavior results. The critical exponents of this
transition can be related to those of the filling transition
with the help of a few plausible phenomenological argu-
ments. This model seems to be the rare case where for a
136101-4
strongly fluctuating system in d � 3 dimensions the criti-
cal exponents can be predicted exactly.
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