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Competition of Percolation and Phase Separation in a Fluid of Adhesive Hard Spheres
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Using a combination of Monte Carlo techniques, we locate the liquid-vapor critical point of adhesive
hard spheres. We find that the critical point lies deep inside the gel region of the phase diagram. The
(reduced) critical temperature and density are �c � 0:1133� 0:0005 and �c � 0:508� 0:01. We
compare these results with the available theoretical predictions. Using a finite-size scaling analysis,
we verify that the critical behavior of the adhesive hard sphere model is consistent with that of the 3D
Ising universality class, the default for systems with short-range attractive forces.
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the ‘‘compressibility route’’ [7] and the ‘‘energy route’’
[12] lead to estimates for the critical temperature that

thermal energy, respectively, while 
 is the hard core
diameter, which we henceforth use as the unit of length.
The structure of a simple liquid is well described by
that of a system of hard spheres at the same effective
density. To a good approximation, the effect of attractive
interactions on the liquid structure can be ignored. This
feature of simple liquids is implicit in the van der Waals
theory for the liquid-vapor transition, and has been made
explicit in the highly successful thermodynamic pertur-
bation theories for simple liquids [1]. The perturbation
approach becomes exact as the range of the attractive
interaction tends to infinity while its integrated strength
remains constant [2].We refer to this limit as the ‘‘van der
Waals’’ (VDW) limit [3]. Conversely, as the attractive
forces become shorter ranged and stronger, the perturba-
tion approach is likely to break down. Fluids with strong,
short-ranged attraction (so-called ‘‘energetic’’ fluids [4])
are of growing importance in the area of complex liquids.
For example, short-range attractions are thought to be
responsible for the transition from a ‘‘repulsive’’ to an
‘‘attractive’’ glass [5], which has recently been observed
experimentally in PMMA (polymethylmethacrylate) dis-
persions [6].

In this Letter, we consider a model system that can be
considered as the prototypical energetic fluid: a fluid of
adhesive hard spheres (AHS). Introduced in 1968 [7], the
AHS model is a reference system for particles with short-
range attractions. The pair potential consists of an im-
penetrable core plus a surface adhesion term that favors
configurations where spheres are in contact. At larger
separations, there is no interaction. The AHS model can
be considered as the ‘‘anti–van der Waals’’ limit. Baxter
solved the Percus-Yevick (PY) equation for the AHS
model analytically [7]. In fact, his solution is often used
to analyze experimental results for systems as diverse as
silica suspensions [8], copolymer micelles [9], and the
fluid phase of lysozyme [10].

One important feature of the AHS model is that its
phase diagram contains a liquid-vapor coexistence region
[11]. The PY equation offers different routes to estimate
the location of the liquid-vapor critical point. However,
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differ by some 20%, while the estimates for the critical
density differ by almost a factor of 3. For the analysis of
experimental data, it is important to know the location of
the critical point more accurately since, upon cooling,
adhesive hard spheres percolate to form a gel. The location
of the percolation curve is available from simulation
[13,14] and from analytical estimates [15]. It is not clear,
though, how percolation interferes with the fluid-fluid
phase separation. If Baxter’s estimate of the critical point
were right, the critical point would be on, or near, the
percolation curve. However, if the estimate of Ref. [12]
were closer to reality, then the fluid-fluid critical point
would be deep inside the gel phase. Clearly, this differ-
ence has implications for the possibility of observing the
fluid-fluid critical point in systems with short-ranged
attraction. Also for the (attractive) glass transition, it
makes a considerable difference whether or not the tran-
sition line runs close to a liquid-vapor critical point.

In spite of its obvious importance as a reference sys-
tem for energetic (as contrasted to ‘‘entropic’’) complex
liquids [4], there exist, to our knowledge, no accurate
numerical estimates of the critical point of the AHS
model. This is not surprising, as computer simulations
of the low-temperature AHS model are notoriously diffi-
cult, due to its propensity to form large, even percolating,
clusters. In this Letter, we report a Monte Carlo (MC)
simulation study that allows us to locate the AHS critical
point.

The AHS interaction can be derived from a square well
potential by taking a limit in which the well becomes
infinitesimally narrow and simultaneously infinitely deep
such that the integrated Boltzmann weight of bound
configurations remains finite [7]. The interaction is most
easily defined by the expression for the Boltzmann factor
as a function of pair separation, r:

exp��U�r�=kT� � ��r� 
� �


12�

��r� 
�: (1)

In Eq. (1), U�r� and kT are the formal pair potential and
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The step function � accounts for the hard sphere repul-
sion, and the Dirac delta function introduces the surface
adhesion. The parameter � determines the strength of the
adhesion and can be interpreted as an effective tempera-
ture, or an ‘‘inverse stickiness parameter.’’

To compare the properties of the AHS and VDW mod-
els, we need a measure for the strength of the attractive
interactions that is meaningful in both limits. This is best
achieved by comparing the reduced second virial coef-
ficients: B	

2 
 B2=B
HS
2 , where BHS

2 is the second virial
coefficient of hard spheres. For the AHS model, B	

2 �
1� 1=�4��, and we use this expression to define the �
parameter for theVDW model. In theVDW limit, the free-
energy density is given by fVDW��� � fHS��� � a�2,
where fHS is the free-energy density of a system of hard
spheres at density �, while the constant a measures the
strength of the attractive forces. Hence, in theVDW limit,
� � kTBHS

2 =�4a� is proportional to the temperature. We
henceforth refer to � as the temperature parameter for
both the VDW and AHS systems.

In the AHS model, particles may stick and form clus-
ters. At sufficiently low �, clusters may percolate (span the
system), mimicking the infinite clusters that form during
gelation in the real system. Percolating clusters pose
serious problems for any simulation scheme that employs
volume changing moves (e.g., constant pressure MC),
since all such moves are rejected as soon as percolating
clusters appear. To study the phase behavior of adhesive
hard spheres, we therefore used grand canonical MC
(GCMC) simulation, which can be used beyond the per-
colation threshold. Yet, even with GCMC, equilibration of
the system at low temperatures is prohibitively slow. We
therefore combine GCMC with parallel tempering to
speed up equilibration, and with multiple histogram re-
weighting, to make optimal use of the available simula-
tion data. All simulation techniques had to be specifically
adapted for the AHS model.

The fact that the attractive term in Eq. (1) is infinitesi-
mally narrow means that, in a simulation, the chance of
generating a bound configuration by random displacement
of a particle is vanishingly small. Conversely, the proba-
bility of breaking such a bond, once formed, is also
negligible. Consequently, conventional Metropolis sam-
pling cannot be applied to the AHS model.

We therefore employ a modification of the AHS-MC
schemes described in Ref. [13], where single particle
displacements explicitly make and break up to three
contacts with the test particle simultaneously. States
with higher coordination numbers can be reached indi-
rectly through suitable combinations of moves.

In our GCMC simulations, we employ particle inser-
tion and removal steps with equal probability that to-
gether constitute 45% of MC steps. We only insert and
remove particles that are not bound to others. To speed up
equilibration, we perform cluster translation moves with
probability 5%. A particle is chosen at random, and the
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cluster to which it belongs is translated by a random
amount in each Cartesian direction up to a maximum
that is inversely proportional to the number of particles in
the cluster.

To overcome the slow equilibration of large clusters at
low � or high density, we have used the parallel tempering
scheme of Geyer [16]. Parallel tempering can be per-
formed with replicas at different temperatures, different
chemical potentials, or combinations of both. We have
found it most convenient to gather statistics across the
full density range for one temperature at a time, and
therefore chose to run a hierarchy of chemical potentials,
�, with the same value of �. Each replica attempts a
configuration exchange with one of its neighbors in �
(alternating between the higher and lower neighbor)
every 200 MC steps. The acceptance probability for an
exchange between replicas i and j is min�1; �zi=zj�

Nj�Ni�,
where Ni is the number of particles in the current con-
figuration of replica i, and the activity z is related to the
chemical potential by z � ��3 exp��=kT�, with � the
thermal de Broglie wavelength.

The final computational tool needed to analyze the data
is multiple histogram reweighting [17]. The probability of
observing the system in a state with N particles and B
binary contacts between the particles at temperature �
and activity z can be exactly decomposed into the form

pNB��; z� � �NB��BzN=���; z�; (2)

where �NB is an effective density of states, and ���; z� is
the grand canonical partition function. Knowledge of
�NB up to a multiplicative constant is sufficient to cal-
culate the distribution of N or B at any set of conditions
(�; z). �NB can be obtained over a wide range of (N;B) by
combining overlapping two-dimensional histograms of N
and B collected from simulations at different � and z.

Simulations at sufficiently low � show a range of activi-
ties in which the density distribution is bimodal, indicat-
ing the coexistence of a high- and a low-density fluid
phase. We studied this coexistence at four different sys-
tem sizes, labeled by the length L of the cubic simula-
tion box. For L � 5, 6, and 8, the simulations consisted of
106 equilibration blocks and 107 acquisition blocks, where
a block is L3=
3 MC trial moves, each of which may be a
particle displacement, particle insertion/removal, cluster
translation, or replica exchange. At each temperature,
seven or eight parallel replicas were used, with the range
of activities chosen to span the coexisting densities. At
L � 10, the numbers of equilibration and acquisition
blocks had to be lowered to 2:5� 105 and 2:5� 106,
respectively, to obtain results in a reasonable computa-
tional time.

The �N;B� histograms for different � and z were com-
bined for each system size separately. The coexisting
densities were then obtained as a function of temperature
by reweighting the histograms to find the activity at
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which the two density peaks have equal height. Given the
near-symmetrical density distribution, this criterion is
met when the peak volumes are also almost equal.
However, the equal height method is less ambiguous
when the peaks overlap, as here. Figure 1 shows the
coexistence curves, which clearly exhibit strong finite-
size effects. The curves obtained at different L coincide at
sufficiently low temperature, but deviate significantly
from each other as the critical region is approached.

The size dependence of the coexistence distributions
can be used to locate the critical point more accurately
using the approach developed by Bruce and Wilding
[18,19]. This method uses the fact that, within a univer-
sality class, the critical distribution of the order parame-
ter is invariant up to a rescaling of the order parameter.
As the AHS interactions are short ranged, the fluid-
fluid critical point of this model is expected to belong
to the 3D Ising universality class. The critical distribution
is known to high precision from studies of lattice sys-
tems, and accurate analytic fits are available [20].

The slight asymmetry of the density distribution re-
flects the absence of particle-hole symmetry in off-lattice
models. A symmetrical distribution can be recovered by
accounting for the mixed character of the scaling fields.
The appropriate order parameter is then no longer the
pure particle density � � N=L3, but includes a contribu-
tion from the energy density, which in the AHS model can
be taken as u � �B=L3. The particle and energy density
operators are replaced by the linear combinations [18]

E �
u� r�
1� sr

M �
�� su
1� sr

; (3)

where s and r are system-dependent field mixing parame-
ters that are identically zero for models with Ising sym-
metry. Precisely at criticality, the distribution of M in a
system of sufficiently large linear length L takes on the
0 0.2 0.4 0.6 0.8
density, ρσ3

0.095

0.100

0.105

0.110

0.115

0.120

te
m

pe
ra

tu
re

, τ

L=5
L=6
L=8
L=10

FIG. 1. Coexistence curve of the AHS model from GCMC
using four box lengths, L. Solid symbols denote points actually
simulated; open symbols were obtained by histogram reweight-
ing. Error bars are omitted for clarity. The cross denotes the
estimated critical point at � � 0:1133, � � 0:508.
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universal form pL�M� � p	�aL�M�Mc��, where
Mc � hMi evaluated at the critical temperature, and
aL / L�=� with � and � critical exponents.

Table I lists the apparent critical temperature �a and
mixing parameter s at which the distribution of M most
closely matches p	�x� for the four system sizes studied.
The fact that s is small indicates that the distribution of �
itself is nearly symmetric. The apparent size dependence
of s is probably—at least partly—due to the fact that,
despite the long simulations employed, statistical fluctua-
tions in the histograms are still significant. For small L,
�a is expected to show some size dependence due to
finite-size corrections to scaling [19]. However, the dif-
ferences in �a shown in Table I are not monotonic, and are
again likely to be due to limited statistics. Rather than
attempting to extrapolate to the infinite system limit, we
therefore quote the critical parameters that most closely
reproduce the universal critical form, with error bars
covering the uncertainty in a typical �a�L�, plus the range
of values observed for different L:

�simc � 0:1133� 0:0005; �sim
c � 0:508� 0:01:

Figure 2 shows the distribution of the order parameter at
the proposed �simc (not the individual apparent critical
temperatures �a) for all four system sizes. The collapse
of the data onto the Ising distribution shows that the
transition is consistent with this universality class.

The size dependence of the scaling factor aL in Table I
permits an estimate of the ratio of the critical exponents
� and �. A straightforward fit to the asymptotic form
aL / L�=� yields �=� � 0:50� 0:04, which is clearly
compatible with the Ising value �=� � 0:52.

We can now compare our numerical results with vari-
ous theoretical predictions. Below, we list the estimates
based on the PY compressibility [7] and energy [12]
routes, and the estimate based on the VDW (mean-field)
expression [21]:

�PYcc � 0:0976; �PYec � 0:1185; �VDWc � 0:0943;

�PYc
c � 0:232; �PYe

c � 0:609; �VDW
c � 0:250:

The coexistence curves for the two PY routes can be
TABLE I. Size-dependent properties for critical point deter-
mination. �a is the apparent critical temperature, at which the
distribution of M (with field-mixing parameter s) collapses
onto the universal form p	�x�. The remaining three columns
refer to properties at the proposed critical temperature of
�simc � 0:1133: �c is the mean density, zc is the activity, and
aL scales p�aLM� to have unit variance.

L s �a �c zc aL

5 0.04 0.1130 0.499 0.088 09 3.830
6 0.04 0.1134 0.506 0.08762 4.036
8 0.02 0.1135 0.513 0.087 27 4.727

10 0.02 0.1132 0.512 0.087 23 5.362
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FIG. 2. Distribution of the order parameter at the proposed
critical temperature from GCMC at four different box lengths,
L. Each curve has been scaled to have unit variance. The solid
curve is the 3D Ising critical distribution [20].
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obtained numerically using the analytical expressions
[22] for the chemical potential and pressure. These theo-
retical curves, together with the mean-field result and the
simulation data at L � 8 are shown in Fig. 3. The simu-
lation results lie between the two PY predictions, but are
clearly closer to those of the energy equation.

Also plotted in Fig. 3 is the percolation threshold. The
theoretical result [15] corresponds to the PY estimate of
where the cluster size diverges. In simulations, we define
the percolation threshold as the locus of points were the
probability of observing a percolating cluster in a canoni-
cal simulation is 50%. This definition is relatively size
independent, and our results with N � 500 particles are
consistent with the more elaborate analysis of Lee [14].
Both the theoretical and simulated percolation lines
clearly show that the critical point of the fluid-fluid
transition lies well within the percolated part of the phase
diagram.
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FIG. 3. Solid lines: coexistence curves for theVDW limit, the
AHS PY compressibility, and energy routes, and AHS simula-
tion with L � 8. For the latter, the line merely guides the eye
between the data points. Dashed lines: percolation threshold
from PY theory and simulation (line with circles).
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The phase diagram reported in Fig. 3 is likely to be
representative of that of real colloidal systems with short-
ranged attraction at the same value of �. If so, our findings
suggest that the attractive glass transition [5,6] is rela-
tively far removed from the fluid-fluid critical point.
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