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Fluctuation-Dissipation Theorem for Metastable Systems
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We show that an appropriately defined fluctuation-dissipation theorem, connecting generalized
susceptibilities and time correlation functions, is valid for times shorter than the nucleation time of
the metastable state of Markovian systems satisfying detailed balance. This is done by assuming that
such systems can be described by a superposition of the ground and first excited states of the master
equation. We corroborate our results numerically for the metastable states of a two-dimensional Ising
model.
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intensive parameters have values such that the equili-
brium state would consist of a different phase or a coex-

stationary solution of the master equation. If detailed
balance holds then L̂L0 is self-adjoint with respect to the
There have been many efforts to extend the concepts
and methods used to describe systems in equilibrium to
systems which are not in equilibrium but are either
stationary or evolve very slowly [1,2]. A particular class
of ‘‘slowly evolving’’ out of equilibrium systems are
those which are in a metastable state and, due to their
ubiquity, their characterization is of special interest.
Usually it is thought that the macroscopic properties
of a metastable system can be treated as if it were in
equilibrium. In particular, even relations such as the
fluctuation-dissipation theorem (FDT) [3–5] are gener-
ally assumed to be valid for systems in a metastable state.
However, metastable systems are actually far from equi-
librium and there is no reason to expect the validity of
this theorem for such systems, even if their evolution is
very slow. Indeed, the FDT does not apply to systems such
as finite-range spin glasses, domain growth processes,
structural glasses, and others (see Ref. [6] and references
therein). In this Letter we use a dynamical approach to
show why it is justified to apply results from equilibrium
to metastable states for the case of Markovian stochastic
dynamics, and we derive the FDT for these systems from
the microscopic dynamics.

Since the phenomenology of metastable states has been
assumed to be similar to that of equilibrium systems,
most of the efforts have focused on understanding the
mechanisms by which a system decays from the meta-
stable state to equilibrium by nucleation processes (grow-
ing of a second phase) [7–11]. However, a theory for the
description of metastable states per se is still lacking [12].
This is partly because the phenomenon of metastability is
a relative and rather complicated concept [13]. Penrose
and Lebowitz [11] made a detailed characterization of the
principal properties observed in the behavior of systems
in a metastable state, which can be summarized as fol-
lows: In a metastable state, a system behaves similarly to
a hypothetical pure thermodynamic phase, although the
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istence of different phases. When the system is isolated,
the metastable state remains for a very long time. The
response to small and slow perturbations leads to small
and reversible changes in the systems. For large or rapid
changes, the system may escape irreversibly from the
metastable state. Beyond qualitative characterizations,
there is not a clear and general definition of metastability
[14]. In this work we use a definition of a metastable
state similar to that introduced by Davies [15,16]
for Markovian systems satisfying detailed balance, in
terms of the eigenvectors of the corresponding time in-
dependent master equation [17]. Using this definition and
the Kubo formalism for linear response theory [3–5], we
obtain a metastable fluctuation-dissipation theorem valid
for times short compared with the nucleation time of the
system.

In the following we limit ourselves to the dynamics of
Markovian systems with a finite (possible large) number
of states. Those can be described by a master equation to
which we associate an operator L̂L0,

_PP�t� � L̂L0P�t�: (1)

If the system is characterized by a set of discrete random
variables ~��, then P�t� is a vector of components p� ~��; t�
which correspond to the probability that the system is in
the state specified by ~�� at time t. When Eq. (1) is solved
by separation of variables, we obtain the time independ-
ent master equation

L̂L0 j � ��j j; (2)

where �j and  j are the eigenvalues and eigenvectors of
L̂L0, respectively. Because of conservation of probability
there exists a stationary solution  0� ~��� associated to the
eigenvalue �0 � 0, namely,  0� ~��� � pe� ~���. Here pe is
the Boltzmann probability distribution of the system in
the equilibrium state, which we assume to be the only
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following internal product,

�R;Q� �
X
~��

R� ~���Q� ~���
 0� ~���

; (3)

with R and Q two arbitrary functions with finite
norm [18]. For R �  0 and Q �  j, Eq. (3) impliesP

~��  j� ~��� � �0;j, i.e.,  0� ~��� is normalized and  j�0� ~���
sum to zero.

We assume now that it is possible to choose the param-
eters of the system in such a way that one of the eigen-
values of L̂L0, labeled by ��1, corresponds to a decay that
is much slower than the observational times. This is 0<
�1 � 1 � �j, for j � 2, in appropriate units. This as-
sumption means that we neglect the case of having sev-
eral different metastable states. The extension to finitely
many metastable states is straightforward, but not the one
to systems with a divergent number of metastable states
(glasses, spin glasses, etc.).

Let us now prepare the system in any configuration ~��0.
Since the set of eigenfunctions is complete (as follows
from the self-adjointness of L̂L0), we can represent the
corresponding probability distribution as

� ~��; ~�� 0 �  0� ~��� �
X1
j�1

 j� ~��0� j� ~���

 0� ~��0�
; (4)

and hence, for 1=�2 � t� 1=�1, one gets a nearly
stationary state (which essentially does not vary in time
for t� 1=�1),

eL̂L0t� ~��; ~�� 0 
  0� ~��� �G� ~��0� 1� ~���; (5)

where G� ~��0� �  1� ~��0�= 0� ~��0�. That the right-hand side
(r.h.s) of Eq. (5) is a probability distribution follows from
the norm and positivity preserving properties of exp�L̂L0t�.
When G� ~��0� � 1, the state given by Eq. (5) is the equi-
librium state, since the second term in the r.h.s is negli-
gible. On the other hand, when G� ~��0� � 1 the state is
sharply localized in a zone of configurations f ~��gm (here-
after, the metastable zone) and very small outside this
zone. Then, this quasistatic probability distribution
represents the metastable state. Notice that in this
situation G is independent of ~��0 since any configuration
prepared within the metastable zone is expected, on phys-
ical grounds, to evolve into the same intermediate
metastable state pm� ~���. The case G� ~��0� � 1, leads to
configurations which have comparable probabilities of
evolving into either the equilibrium or metastable state.
We assume that this set of ‘‘saddle points’’ is negligible
compared to the sets of both, equilibrium and metastable
configurations.

Now consider a system which can be prepared in a
metastable initial state described by

pm� ~��� �  0� ~��� �G 1� ~���; G� 1: (6)

As pm� ~��� is negligible outside the metastable zone, we
135701-2
approximate pm� ~��� as

pm� ~��� 

�
 0� ~��� �G 1� ~���; for ~�� 2 f ~��gm;
0; for ~�� 2 f ~��gm;

(7)

with G� 1. The last equation coincides with the defini-
tion of the metastable state given by Davies [15,16], where
the reader can find greater detail.

Using the definition of G and the fact that it is constant
within the metastable zone one gets  1� ~��� � G 0� ~��� for
~�� 2 f ~��gm. On the other hand, using that pm� ~��� � 0 out-
side the metastable zone, we get  1� ~��� � �1=G 0� ~��� for
~�� =2 f ~��gm Thus, the first excited state  1� ~���, and hence,
the metastable state, is specified in terms of the equili-
brium distribution for (almost) all configurations of the
system since it is locally proportional to the Boltzmann
distribution in both metastable and nonmetastable zones.
The proportionality coefficients are given by G and
�1=G, respectively.

This simple picture of metastability allows us to go
beyond the description of the distributions characterizing
the metastable states. In particular, we now derive a FDT
through linear response theory for these states. We now
consider the perturbed master equation,

_PP � h _P1P1 � �L̂L0 � hei!tL̂L1��P� hP1�; (8)

where L̂L1 is the perturbative term generated by an oscil-
latory external field and P is the probability distribution
in the absence of the perturbing external field, whose
evolution is described by Eq. (1).

Now, if the system is initially in its metastable state —
described by Eq. (6)—after some algebra we obtain the
following general expression for the changes in the prob-
ability distribution P1� ~��; t�, to first order in h,

P1� ~��; t� � h
Z t

0
eL̂L0�t�t0�L̂L1� 0� ~��� �G 1� ~����ei!t

0
dt0

� h
Z t

0
eL̂L0�t�t0�L̂L1G 1� ~���ei!t

0
�e��1t0 � 1�dt0:

(9)

This expression is exact for all times. Since L̂L1,  0, and  1

are independent of t0, the integrations are trivial.
Expanding P1� ~��; t� in the basis of eigenvectors of L̂L0,
the equilibrium case is recovered for t! 1. For times
t� 1=�1, the second integral vanishes and the first in-
tegral yields the total change of the probability distribu-
tion starting from the metastable initial condition.

We introduce for any � the following notation:

hB�t�i� �
X
~��

B� ~����� ~��; t�: (10)

We can calculate the changes of the average value of any
physical quantity B� ~��� as hB�t�iP1

where P1 is taken from
Eq. (9).

By taking the corresponding Laplace-Fourier trans-
form of hB�t�iP1

, we can define [19] the metastable sus-
ceptibility of the system as
135701-2
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��s� �
X
~��

B� ~���
X
j

 j� ~���
�
� j; L̂L1� 0 �G 1��

�s��j�

�
�1� j; L̂L1G 1�

�s��j��s��1 � i!�

�
:

(11)

Then, in linear approximation, the metastable suscept-
ibility consists of two terms. The first term is similar to
135701-3
the equilibrium case, but this time the initial condition is
the probability distribution of the metastable state. The
second is a memory term corresponding to a convolution
with the external field.

We now define  j�h� as the eigenfunctions of the oper-
ator L0 � hL̂L1. To first order in h we have the following
relation connecting L̂L1 i�0� with the derivatives of  1�h�
with respect to h:
L̂L1 i�0� � �L̂L0
@ i
@h

�������h�0
��i�0�

@ i
@h

�������h�0
�
@�i

@h

�������h�0
 i�0�: (12)

We substitute Eq. (12) in the scalar products of Eq. (11) and use the appropriate proportionality between  1� ~��� and
 0� ~���. We then split the sum over ~�� in a sum over the stable zone and one over the metastable zone [see Eq. (7)], noting
that if the system has a metastable state as defined above, then the higher excited states satisfy

P
~��m
 j� ~��m� �P

~��=2f ~��mg
 j� ~��� 
 0, for j � 2. This must be the case as

P
~��2f ~��mg

P� ~��; t� � 1 for times shorter than the nucleation
time 1=�1.

We now define E� ~��� as the energy of the system appearing in the Boltzmann distribution and introduce, for each
probability distribution �� ~��; t�, the following dynamical correlation�

_BB�t�
@E
@h

�
�
�

X
~��

@E� ~���
@h

�� ~��; t�
X
~�� 0

B� ~��0� _pp� ~��0; t0j ~��; t�; (13)

where p� ~��0; t0j ~��; t� is the conditional probability that the configuration ~��0 occurs at time t0 given that it was in ~�� at time
t. After several pages of algebra one then gets for the metastable susceptibility

��s� � �L
	�

_BB�t�
@E
@h

�
pm
��1�

�
B�t�

@
@h

�E� kT ln�1�

�
��1

Z t

0
d eiw�t� ��

�
_BB�t�

@E
@h

�
�o��1�



; (14)
where � � 1=kT and �hAi � hAipm � hAipe .
To obtain the metastable fluctuation-dissipation theo-

rem it is enough to show that the second and third terms
in Eq. (14) vanish as the coexistence curve is approached
(first order correction in �1). Since B�t� and _BB�t� remain
bound, the terms related to them are negligible because
�1 � 1. Indeed, the principal correction is given by the
term of the order of @ ln�1=@h. Since �1 is the nucleation
rate [10], it is given roughly by exp���W� whereW is the
nucleation barrier. UsuallyW is roughly Rd�1

c , where Rc is
the critical droplet radius and diverges algebraically as
the supersaturation h0 goes to zero. Here the total strength
of the external field is given by the fixed initial field h0
plus the perturbation h (h0 in the Ising model is the
external magnetic field). From this it follows that
@�1=@h also diverges algebraically in h, whereas �1

goes to zero as a stretched exponential. Thus we have
established the central result of this work, a fluctuation-
dissipation theorem for the metastable states.

In order to check the FDT for metastable states, we will
show that the susceptibility obtained by perturbing the
metastable state of a two-dimensional Ising model with a
magnetic field of fixed frequency agrees with that ob-
tained by taking the Fourier-Laplace transform of the
correlations of the fluctuations in the metastable state,
given by the first term in the r.h.s. of Eq. (14). Our
programs where proved checking the well known FDT
in equilibrium (see Fig. 1). We obtained the autocorrela-
tion of the magnetization by a Monte Carlo simulation for
a two-dimensional Ising model evolving by Glauber dy-
namics [17] on a square lattice with periodic boundary
conditions. The set of external parameters (temperature
T, coupling J, and static magnetic field h0) was chosen to
give long-lived metastable states ( � 104 Monte Carlo
time steps per spin) when starting with all spins opposite
to the magnetic field. As suggested in Refs. [20,21], we
used T � 2

3TcJ, where Tc is the critical temperature and J
is the coupling between nearest neighbor spins. The ex-
ternal magnetic field h0 was chosen by trial. For all
calculations we allowed the system to evolve until a
long-lived state opposite to the field was reached. Then
we computed the average of the fluctuations of the mag-
netization with respect to the metastable equilibrium
value, over a set of 100 realizations.

In Fig. 1 we show the magnetic susceptibilities as a
function of the frequency. The open squares correspond
to the classical magnetic susceptibility for the equili-
brium state, obtained by the definition of linear response
theory. The crosses correspond to the same quantity
for the metastable state. Both quantities were averaged
over ten realizations. The dashed lines correspond to the
135701-3
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FIG. 1. Magnetic susceptibility for a two-dimensional Ising
model with 104 spins; temperature T � 1:52, external magnetic
field h0 � 0:1, and coupling J � 1. As usual, the real part is the
positive quantity and the imaginary part is the negative quan-
tity. The crosses correspond to the metastable computation by
the perturbative method and the open squares to the corre-
sponding equilibrium computation. The solid lines and the
dashed lines were obtained by transforming the metastable
and equilibrium autocorrelations of the magnetization. The
inset shows the autocorrelation of the magnetization. The solid
lines and the dashed lines correspond to the metastable and
equilibrium correlations, respectively.
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equilibrium magnetic susceptibility computed using
Laplace-Fourier transformation of the corresponding
autocorrelations (per spin) of the magnetization given
in the inset (dashed line). Finally, the solid lines corre-
spond to the magnetic susceptibility obtained by trans-
forming the appropriate autocorrelation function in
the metastable state (continuous line in the inset).
We find the same good level of agreement for the equili-
brium and metastable cases. It is interesting to observe
that the behavior of the correlations is very different in
both cases.

In summary, by using a formal definition of a meta-
stable state for the case of Markovian systems with a
finite number of states we have shown that the FDT
indeed holds for times shorter than the nucleation time.
We also evaluated the size of the leading corrections.
Since many systems have Markovian dynamics on suffi-
ciently long time scales, this result has quite a broad range
of applicability. A crucial hypothesis was the existence of
one single low-lying excited state of the operator L̂L0. This
means that nucleation is the slowest physical process, a
condition often satisfied in practice. Detailed calculations
and numerical simulations will be given elsewhere [22].
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