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Entangled Imaging and Wave-Particle Duality: From the Microscopic
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We formulate a theory for entangled imaging, which includes also the case of a large number of
photons in the two entangled beams. We show that the results for imaging and for the wave-particle
duality features, which have been demonstrated in the microscopic case, persist in the macroscopic
domain. We show that the quantum character of the imaging phenomena is guaranteed by the
simultaneous spatial entanglement in the near and in the far field.

DOI: 10.1103/PhysRevLett.90.133603 PACS numbers: 42.50.Dv, 03.65.Ud
c
q0 / ��lc��1=2, with � being the central wavelength of the
down-converted fields].We developed a numerical model,

Almost all down-conversion literature is limited to the
case hn� ~qq�i � 1, in which state (2) reduces to
A major trend in physics at present is to ‘‘push the
realm of quantum physics well into the macroscopic
world’’ [1]. In the case of photon systems, quantum
effects such as squeezing or twin beams can be found
also in the regime of large photon number. However, the
analysis of fundamental phenomena, such as wave-
particle duality, for a macroscopic electromagnetic field
requires a spatially multimode treatment, as developed
in [2,3].

The field of quantum imaging [4] and, especially, the
topic of entangled two-photon imaging (EPI), provides
an ideal framework for such a discussion. The theory of
EPI was pioneered by Klyshko [5], who formulated a
heuristic approach that stimulated a number of key ex-
periments, especially in the laboratory of Shih [6].
Similar experiments in the group of Zeilinger [1] ad-
dressed the discussion of fundamental issues in quantum
physics. Recently, the Boston group formulated a system-
atic theory of such phenomena [7]. All the papers [5–7]
concerned the regime of single photon-pair detection in
the parametric down-conversion process. In this Letter,
we formulate a theory for EPI which holds for arbitrary
down-conversion efficiency, and therefore encompasses
also the case in which a large number of photons are
detected in each pump pulse, as it happens, e.g., in the
experiment described in [8]. A key role in our analysis is
played by the concept of spatial entanglement [9,10] we
introduced previously. Special attention is devoted to a
clear identification of the features that require the pres-
ence of quantum entanglement rather than classical cor-
relations, as those of the experiment of Boyd et al. [11].

We consider a type II ��2� crystal of length lc. We
assume an undepleted pump beam, with a Gaussian pro-
file of waist wp, and a Gaussian temporal pulse profile of
duration �p. In the parametric down-conversion process,
the signal/idler (S=I) photon pairs are emitted over a
broadband of temporal frequencies (bandwidth �0 /
l�1) and a broadband of spatial frequencies [bandwidth
0031-9007=03=90(13)=133603(4)$20.00
based on the Wigner representation, that simulates the
propagation of the three waves inside a realistic ��2�

crystal, including the effects of diffraction, spatial and
temporal walk-off, and temporal dispersion [12]. Here we
will not describe such a method, but we will focus on
some key results for a conceptual experimental scheme
suited to discuss the wave-particle aspects at a macro-
scopic level. We also used an analytic approach, valid in
the limit of a plane-wave cw pump, where propagation
inside the crystal is described in terms of the unitary
transformation [2,12]:

aouti � ~qq;�� � Ui� ~qq;��aini � ~qq;��

� Vi� ~qq;��ain y
j �� ~qq ���;

i � j � S; I;

(1)

linking S=I fields at the input with those at the output face
of the nonlinear crystal. ai� ~qq;��in=out are annihilation
operators of plane-wave modes, ~qq being the transverse
wave vector and � the shift from the carrier frequency.
The explicit form of the functions Ui and Vi will be given
in [12]. For brevity of notation, we drop in the following
the frequency argument from all the formulas (even if we
took it into account in our calculations). When the trans-
formation equivalent to (1) in a Schroedinger-like picture
is applied to the input vacuum state of the S=I fields, we
obtain the output entangled state:

j i �
Y
~qq

(X1
n�0

cn� ~qq�jn; ~qqiSjn;� ~qqiI

)
; (2)

where jn; ~qqiS=I denotes a Fock state with n photons
in mode ~qq of the S=I beam, and cn� ~qq� �
fUS� ~qq�VI�� ~qq�gnjUS� ~qq�j��2n�1�. Moreover,

jcn� ~qq�j
2 �

hn� ~qq�in

�1� hn� ~qq�i�n�1 ; (3)

where hn� ~qq�i is the average number of photons in mode ~qq.
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FIG. 1. (a) Imaging scheme. P � pump beam, ��2� � type II
crystal, S � signal field, I � idler field, DS;DI � detectors,
L � lens with focal length f, NF � near field, FF � far field,
and PBS � polarizing beam splitter. (b) Scheme for the dis-
cussion of fundamental aspects.
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j i �
Y
~qq

c0� ~qq�j0; ~qqiSj0;� ~qqiI

�
X
~qq

�
c1� ~qq�j1; ~qqiSj1;�qiI

�
Y
~qq1� ~qq

c0� ~qq1�j0; ~qq1iSj0;� ~qq1iI

�
: (4)

In this case, which we refer to as the microscopic case,
one detects coincidences of single photon pairs; in appli-
cation to imaging, the image is reconstructed from a
statistics over a large number of coincidences. In this
Letter we focus, instead, on the case in which the average
photon number per mode is not negligible, so that all the
terms of the expansion (2) are relevant (we call it the
macroscopic case). In this case, the entanglement is with
respect to photon number, and this model predicts perfect
correlations in the S=I photon numbers detected on two
symmetric modes ~qq and � ~qq [10].

An interesting analytical limit is that of a short crystal,
where diffraction and walk-off along the crystal become
negligible. The coefficients Ui and Vi in Eq. (1) become
practically constant with respect to ~qq, and can be replaced
by their value at ~qq � 0. Back-transforming Eq. (1) to the
real space, one obtains input/output relations local in the
position ~xx in the crystal output plane (‘‘near field’’), and
the corresponding output state reads

j i �
Y
~xx

(X1
n�0

cn� ~qq � 0�jn; ~xxiSjn; ~xxiI

)
; (5)

where jn; ~xxi is the Fock state with n photons at point ~xx. In
this limit, there is ideally a perfect correlation in the
number of S=I photons detected at the same near field
position.We incidentally note that if only one beam of the
two is considered, its reduced density matrix is diagonal
in the Fock state basis, and corresponds to a thermal
statistics with photon number distribution given by (3).

In the more sophisticated numerical model, the finite
size of the pump has the effect that, if one idler photon
is emitted in direction ~qq, its twin photon will travel in
the symmetric direction � ~qq, within an uncertainty �q �
1=wp, which, hence, represents the uncertainty in the
signal transverse momentum when determined from a
measurement of the idler transverse momentum. On the
other hand, due to the finite length of the crystal, twin
photons created in a single down-conversion process at
the same position are separated by diffraction along the
crystal. The uncertainty in the position of a signal photon
conditioned to the detection of an idler photon at posi-
tion ~xx is given by a coherence length lcoh � 1=q0 �
��lc=2��

1=2. Really important for the purpose of imaging
is the number of pixels that can be resolved in an imaging
scheme based on correlation measurements. This number
is assessed, both in the near and in the far field, by the
ratio �wp=lcoh�2 � �q0=�q�2. The simultaneous presence
of entanglement both in momentum and in position is a
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fundamental property of the down-converted photons,
which, as we will see, plays a crucial role in the imaging
process. This property persists for a large photon number,
a case in which the entanglement assures a photon number
spatial correlation at the quantum level both in the near
and the far field.

Figure 1 illustrates a compact imaging scheme. The S=I
beams are separated by the polarizing beam splitter PBS
(we assume for simplicity that the distance from the
crystal exit to PBS is negligible). In the path of the S
beam there is an object, which is imaged by a lens on the
far-field plane, where it is detected by a single pointlike
detector DS. An identical lens images the I beam on its
detection plane, where it is observed by an array of
detectors DI. The distance z between the PBS and the
lens, and between the lens andDI, can be varied; we focus
on the cases z � f and z � 2f, in which we will see that
the diffraction pattern (z � f) and the image (z � 2f) of
the object can be reconstructed by correlation measure-
ments. For definiteness, we discuss the case in which the
object is a double slit, with a being the width of the two
slits and d their distance. For z � f, Fig. 1(a) corresponds
to the setup of some of the experiments in [6]. The
imaging scheme of Fig. 1(a) is consistent with the philos-
ophy of entangled imaging, that is, to keep the detection
and imaging systems in the signal arm as simple as
133603-2
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FIG. 2. Numerical simulation of the experiment in Fig. 1(a)
with z � f. Parameters are those of a 4 mm beta-barium borate
crystal, with wp � 332 &m, �p � 1:5 ps (�coh � 0:87 ps,
lcoh � 16:6 &m), a � 17 &m, and d � 104 &m. (a) Mean in-
tensity of the S=I beams after 10 000 pulses; (b) solid line:
correlation G�xI; xS� as a function of xI after 10 000 pulses;
dashed line: plane-wave result of Eq. (7). x0 � �fq0=�2��.
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possible, and fixed once for all, whereas in the idler arm a
complete detection array can be located, and the optical
imaging system can be varied at ease.

As a straightforward generalization from the coinci-
dence counts of the microscopic case [5–7], we consider
the spatial correlation of the S=I detected intensities.
Precisely, we denote with IS� ~xxS� and II� ~xxI� the intensities
detected by DS and by the array DI averaged over a
detection time �D (in typical pulsed experiments �D �
�p), and we introduce the spatial correlation function,

G� ~xxI; ~xxS� � hII� ~xxI�IS� ~xxS�i � hII� ~xxI�ihIS� ~xxS�i: (6)

The object information is contained in the correlation
G� ~xxI; ~xxS� as a function of ~xxI for fixed ~xxS.

Together with the scheme in Fig. 1(a), we consider the
alternative scheme 1(b), analyzed in [1] in the micro-
scopic case. In this scheme, the S beam is detected by
an array, and I by a pointlike detector. The image is
provided by G� ~xxI; ~xxS� as a function of ~xxS for fixed ~xxI.
Let us first consider the case z � f, in Fig. 1(b). If the
I field is not detected, there is no possibility of observing
the interference fringes by a direct measurement of field
S alone, unless the object is contained in a coherence area,
i.e., d� lcoh. In the microscopic case, it was argued [1]
that in principle one could detect the I photon, and obtain
‘‘which-path’’ information on the S photon, and this is
enough to cancel the fringes. We argue more generally
that since the S beam alone is in a thermal mixture, the
interference fringes are not visible due to the lack of
coherence. However, in order to make fringes visible, it
is enough to condition the S beam measurement to a
measurement of the I beam by a single pointlike detector.
In the microscopic case, the fringes are observed via
coincidence measurements, as explained in [1], because
detection of the I photon in the far field determines the S
photon momentum before the double slit, due to momen-
tum entanglement, providing a quantum erasure [13] of
any which-path information. In the general case, the
basic mechanism is the S=I far-field intensity correlation,
and calculations performed with the analytical model (1)
show that

G� ~xxI; ~xxS� /

�������~TT
�
~qq �

2�
�f

� ~xxS � ~xxI�
	�������2

�

�������US

�
�2�~xxI
�f

	
VI

�
2�~xxI
�f

	�������2
; (7)

where ~TT � ~qq� is the Fourier transform of the transmission
function T� ~xx� describing the object. Under the conditions
a * lcoh, d < wp, the entire interference-diffraction pat-
tern is visible with good resolution. The result (7) is
symmetric with respect to ~xxS and ~xxI; hence, the same
pattern appears in the imaging scheme 1(a). Figure 2(b)
shows the result of a 1D numerical simulation of the
pattern reconstruction via intensity correlation function.
A statistical average over a reasonable number of pump
shots was enough, because �p was on the same order of
133603-3
magnitude as the amplifier coherence time �coh � 1=�0.
Our calculations show that, when �D � �coh, the function
G� ~xxI; ~xxS�, which contains all the information about the
object, becomes much smaller than the two terms on the
right-hand side of Eq. (6), at the expense of the visibility.

Consider now scheme 1(b) in the z � 2f case, in which
the DI detector lies in the image plane with respect to the
object, and the measurement exploits the S=I spatial
correlation in the near field. In the microscopic case,
fringes are not visible because the detection of the I
photon in the near field, due to position entanglement,
provides perfect which-path information about the S
photon [1]. Our general result is that, again, for a >
lcoh, d < wp,

G� ~xxI; ~xxS� / jT� ~xxI�j2
�������US

�
2�~xxS
�f

	
VI

�
�
2�~xxS
�f

	�������2
: (8)

In scheme 1(b), where ~xxI is fixed, there is no information
about the object. However, in scheme 1(a) ( ~xxS fixed), the
object image can be reconstructed via the correlation
measurement. Hence, by only changing the optical setup
in the path of the idler, which does not go through the
object, one is able to pass from the diffraction pattern to
the image of an object. This result is confirmed by our
numerical simulation shown in Fig. 3.

In order to assess the quantum nature of the phenomena
observed in the imaging scheme of Fig. 1(a), the key
question is whether these results can be reproduced by
133603-3
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FIG. 3. Numerical simulation of the experiment in Fig. 1(a)
with z � 2f. Parameters as in Fig. 2. The figure showsG�xI; xS�
as a function of xI after 10 000 pulses.
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using a ‘‘classical’’ mixture, instead of the pure entangled
state (2) and (5). It is natural to focus on the two mixtures

W �
Y
~qq

(X1
n�0

jcn� ~qq�j
2jn; ~qqiSjn;� ~qqiIIhn;� ~qqjShn; ~qqj

)
; (9)

W0 �
Y
~xx

(X1
n�0

jcn�0�j
2jn; ~xxiSjn; ~xxiIIhn; ~xxjShn; ~xxj

)
: (10)

Mixture (9) preserves the local S=I spatial intensity cor-
relation in the far field, while the intensity correlation
function is completely delocalized in the near field. By
following the same notation of [7], we indicate by
hj� ~xxj; ~xx� the linear kernel describing propagation through
the imaging setup of beam j � I; S; we introduce their
Fourier transforms ~hhj� ~xxj; ~qq� describing how a ~qq compo-
nent of the j beam at the crystal exit face is transformed
into the field at point ~xxj at the detection plane. With
mixture (9), we obtain

G� ~xxI; ~xxS� �
Z
d ~qqj~hhS� ~xxS; ~qq�j2j~hhI� ~xxI;� ~qq�j2

� jUS� ~qq�VI�� ~qq�j2: (11)

The optical setup in the S beam arm is fixed, and

~hhS� ~xxS; ~qq� �
1

i�f
~TT
�
2�
�f

~xxS � ~qq
	
: (12)

In the z � f configuration of Fig. 1(a), j~hhI� ~xxI;� ~qq�j2 /
��2��f ~xxI � ~qq� and we obtain the same result of Eq. (7).
Hence, fringes are visible with the classical mixture (9)
in the same way as with the pure EPR state (2). However,
for z � 2f, ~hhI� ~xxI;� ~qq� / exp�i ~xxI � ~qq�, and the correlation
function is constant with ~xxI; thus, in this case the scheme
gives no information at all about the object. Conversely,
the mixture (10) preserves the S=I local intensity corre-
lation only in the near field. Not surprisingly, in this case
the z � 2f scheme 1(a) provides the image of the object,
as with the pure state, but in the z � f case the fringes are
not visible. The key point is that only the pure EPR state
(2) and (5) displays S=I spatial correlation both in the
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near and in the far field. This analysis is not in contrast
with the basic conclusion of Ref. [11], that the result of
each single experiment in EPI can be reproduced by a
classically correlated source. Here we argue that only in
the presence of quantum entanglement the whole set of
results illustrated in Figs. 2(b) and 3 can be obtained by
using a single source, and by keeping the optical setup in
the signal beam arm fixed.

In conclusion, we formulated a theory that encom-
passes both the microscopic (single photon-pair detec-
tion) and the macroscopic (multiphoton detection) case.
Our results show that the imaging and wave-particle
duality phenomena, observed in the microscopic case,
persist in the macroscopic domain, and indicate a possible
experiment that is able to discriminate between the pres-
ence of quantum entanglement or classical correlation in
the two beams. Clearly, there is a practical limit in the
macroscopic level that can be attained preserving such
phenomena. In order to increase the number of down-
converted photons, usually either the pump beam is
more focused (wp is decreased), or the crystal length lc
is increased. However, when the condition wp � lcoh /�������
�lc

p
is reached, the resolution of the spatial entanglement

in the near and the far field, as well as in the entangled
imaging, is completely lost.

This work has been carried out in the framework of the
FET project QUANTIM of the EU.
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