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We discuss a decoherence insensitive method to create many-particle entanglement in a spin system
with controllable collective interactions and propose an implementation in an ion trap. An adiabatic
change of parameters allows a transfer from separable to a large variety of entangled eigenstates. We
show that the Hamiltonian can have a supersymmetry permitting an explicit construction of the ground
state at all times. Of particular interest is a transition in a nondegenerate ground state with a finite
energy gap since here the influence of collective as well as individual decoherence mechanisms is
substantially reduced. A lower bound for the energy gap is given.
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Entanglement is one of the most characteristic features
of quantum systems and lies at the heart of quantum
information processing and computing [1]. While in
few-particle systems entanglement is by now reasonably
well understood [2] and practical schemes for its creation
and manipulation are developed [3,4], many-particle en-
tanglement is still an open field of research with a large
unexplored potential for applications. There exist, for
example, proposals to implement quantum computation
in an initially entangled many-particle system by per-
forming only measurements and single qubit operations,
both of which are relatively easy to implement [S5]. A
necessary prerequisite for this is, however, a specific
many-particle entanglement. Since entangled states be-
come increasingly susceptible to environmental interac-
tions if the number of particles increases, an important
practical challenge is the design of robust and most im-
portantly decoherence-resistant mechanisms for its gen-
eration. We here propose and analyze such a mechanism
which is based on adiabatic transitions in a spin system
with controllable collective interactions. Robustness
against decoherence and short process times are achieved
by choosing ground-state transitions with a large energy
gap very similar to the ideas used in adiabatic quantum
computation [6].

Let us consider a collection of N interacting spin 1/2
systems described by a generalization of the Lipkin-
Meshkov-Glick (LMG) Hamiltonian [7]

H={raxd, + 32+ 372+ 2ux3], L (D

where the J; (i € {x, y, z}) are the total-spin operators of
the ensemble. We show that this Hamiltonian can be
implemented for u = 0 with controllable parameters by
a generalization of the ion-trap scheme suggested by
Sgrensen and Mglmer [8], where cold ions interact via a
common trap oscillation and are driven by bichromatic
laser fields. In contrast to the effective Hamiltonian of [8]
the generalized LMG interaction (1) cannot be solved
exactly. It does provide, however, the possibility for adia-
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batic and therefore robust transitions between separable
and entangled many-particle states. The most important
feature of (1) is that such transitions are possible while
staying in a nondegenerate ground state with a finite en-
ergy gap and that a large class of entangled target states
are accessible by varying w. We show that in the special
case of A = 1, the LMG Hamiltonian (1) has a super-
symmetry and the ground state can be explicitly con-
structed for all times of the transfer process. The gap
can be made rather large and hence the process can be fast
despite its adiabatic nature. For the same reason the
influence of decoherence is strongly reduced: Collective
decoherence due to noise in the external control parame-
ters is eliminated by the adiabatic nature of the process,
and the influence of independent individual reservoir
couplings is suppressed due to the presence of a finite
energy gap.

Let us first discuss the case of a negative coupling
parameter £ <O0. If u =0 and A = N, the system de-
scribed by Eq. (1) undergoes a quantum-phase transition
[9] when the interaction parameters y; and y, are
changed [case (i)]. This transition can be described
analytically in the semiclassical limit with J = N/2
and N> 1. If x| = xo, jz is a conserved quantity
and (1) has a trivial anharmonic spectrum: H —
Ex3[AT, — J2 + J*]. The ground state of the system has
maximum total angular momentum J = N/2 and a z
projection m, = *=N/2 depending on the sign of A.
Both of these states denoted by [{1...) and ||| ...) are
separable many-particle states. On the other hand, in the
limit y; = O the terms in (1) containing J . and jz vanish
and the Hamiltonian approaches H — £ x3J2. It has again
a trivial spectrum, however, with two degenerate ground
states |m, = *N/2). Both of these, taken individually,
are separable. Symmetric or antisymmetric superposi-
tions of them form, however, the N-spin analogs of the
Greenberger-Horne-Zeilinger (GHZ) states. Using the
Schwinger-representation of angular momenta [10] one
finds that the state |m. = N/2) is adiabatically connected
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to only one particular superposition due to the symmetry
of the Lipkin interaction. Thus

HL>“TNH

which corresponds to the generation of the N-particle
analog of the GHZ state in the o, basis. |=) denote
single-particle eigenstates of o, with my, = *1 /2, re-
spectively. Because of the phase factor ¢'”’ the entangled
state depends sensitively on the total number of atoms
even in the limit N — oo [11].

For a positive coupling parameter, & > 0, three cases
need to be distinguished: w = 0 and the total number of
spins is odd [case (ii)]; 4 = O and the total number of
spins is even [case (iii)]; and u # 0 [case (iv)]. In all
cases the ratio y,/x» is again rotated from unity to zero.

Since ¢ > 0 the initial ground state in cases (ii) and
(iii) is [m, = *=N/2) depending on the sign of A # 0 and
is separable. The final Hamiltonian is again H = (f)(%]j,
whose ground state is now, however, the eigenstate of J,
with smallest value of [m,|. Thus for an odd number of
particles [case (ii)] there are two degenerate ground states
with m, = *=1/2, both of them being maximally en-
tangled. Making use of the symmetry of the interaction
and using the Schwinger representation we find that the
adiabatic transition leads to the mapping

D+ e™=—.00) 2
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where n =[N/2] and the subscript s
symmetrization.

In case (iii) the final ground state (y; — 0) is non-
degenerate, has spin projection m, = 0, and is maximally

entangled.

denotes

..y @

In this case there is no merging of eigenstates and con-
sequently no phase transition. The absence of degeneracy
during the entire adiabatic transfer makes case (iii) par-
ticularly interesting because here decoherence is strongly
suppressed by the presence of a finite energy gap. The
target state is, however, fixed to the special case Imy = 0).

The variety of accessible target states in a nondegener-
ate adiabatic ground-state transition can be substantially
increased by adding a linear interaction proportional to
jy to the LMG Hamiltonian, i.e., by allowing for a non-
vanishing value of w in Eq. (1) [case (iv)]: If we assume
for simplicity that u = m, with m being an integer or
half-integer with m € {—J,—J +1,...,J}, the final
(x; —0) Hamiltonian approaches H — &x3[J? +
2mJ yJ- Tts ground state is |m, = m) and thus can be
adjusted to have any eigenvalue of J which is maxi-
mally entangled unless m = *£J.

Imy, = 0) = [(HV2(=)V2). 4

lm, = m). 5)
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In all four cases considered an adiabatic change of
X1/ x> from unity to zero leads to the generation of a
well defined entangled state. In cases (iii) and (iv) this
is, moreover, possible with a finite energy gap. The adia-
batic process is neither of the Landau-Zener nor of the
type of stimulated Raman adiabatic passage [12]. We have
illustrated the different scenarios for even N, u = 0, and
a positive linear term in (1) in Fig. 1.

To find the ground state of (1) for arbitrary values of
X1/ x> as, e.g., during the transfer process is a difficult
task. We will show now that (1) possesses a supersymme-
try (SUSY) for A = 1, allowing for an explicit construc-
tion of the ground state for cases (iii) and (iv). (The
existence of an extra symmetry has been suspected [13]
but has not been understood so far) For A =1 the
Hamiltonian can be factorized as

H - . oA . - . oA :
i s +ixady —ixom)xJx —ixad, +ixap)
— X3p. (6)

Because of the SUSY the spectrum consists of twofold
degenerate and a nondegenerate state [14]. For u = m €
{—J,...,J} the ground state is nondegenerate and obeys
i J, — i,\/zjy + ix,m)|¢) = 0. One finds

|¢O> = N exp(yjz) |my = m>! (7)

where N is a normalization constant and tanh(y)=
X1/ x2 for x1 = x». liy) is an entangled state of the N
spins for any value of y # 0. That is, by varying vy and
choosing m, we have access to a rich variety of entangled
many-particle states while staying in the lowest energy
state.

We proceed by discussing the conditions for adiabatic-
ity and the sensitivity of the process to decoherence. In
this context particular attention has to be given to the

X/% =1

X,/%,= 0

FIG. 1. Energy spectrum of Hamiltonian (1) for £ > 0, even
number of particles N, and maximum J in the limits for
xi/x2—1 and A >0 (left) and y,/x, — 0 (right). If the
sign of ¢ is changed, the picture has to be flipped upside
down, and if the number of spins is odd [case (ii)], the state
m, =0 does not exist and the state |m,| =1 needs to be
replaced by |m,| = 1/2. Adiabatic change of x;/x, allows
for robust transfer between separable (left) and entangled
eigenstates (right) following the possible scenarios (i)—(iii).
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phase transitions in cases (i) and (ii) since they are asso-
ciated with a merging of pairs of energies. Because of the
symmetry of (1) only one superposition of the associated
states is, however, coupled to the nondegenerate initial
ground state. Consequently, for the transition to be adia-
batic it is sufficient that the characteristic time of the
transfer 7 is much larger than the typical inverse fre-
quency difference i/ AE to the next excited states. For the
same reason collective decoherence processes caused,
e.g., by fluctuations in the external parameters &, A, xi,
and y, are suppressed in the present system by an ex-
ponential Boltzmann factor exp(—AE/kzT), where kgT
is the thermal energy of the heat bath. Decoherence pro-
cesses caused by independent heat bath couplings of the
individual spins do not have the symmetry of (1), how-
ever, and hence do couple the degenerate states in cases
(i) and (ii). Only in cases (iii) and (iv), i.e., without a
quantum-phase transition, there is always a finite energy
gap to all other states with the same total angular mo-
mentum J. Thus the entanglement generation in cases (iii)
and (iv) will be robust against collective and individual
decoherence processes, provided the energy gap is suffi-
ciently large.

It is not possible to give an analytic expression for the
energy gap AE in the general case. Numerical investiga-
tions for up to 50 particles indicate that for a transfer
efficiency close to 100% it is sufficient that

XPONT ~ )3T > 1 ®)

with A = N for case (i) and A = 1 for cases (ii)—(@iv). T is
the characteristic transfer time. An estimate for AE in
cases (ii) and (iii), i.e., for u = 0, can be obtained as
follows: Using a variational method with trial functions
| W), one finds an energy estimate (H)y for the ground
state with J = N/2, EEN) = (H)y. Second, one can apply
Temple’s formula [15] to obtain a lower bound E(()N) =
(H)y = [(AH2)y/(E{" = (H)y)],  where  (AH?)y =
((H — (H))*)y is the energy fluctuation in the trial state
and E(lN ) is the energy of the first excited state. One can
show that Temple’s formula gives the best lower bound
when using only (AH?)y, (H)y, and E(IN) as parameters.
Furthermore, we make use of the inequality E(IN ) =
EE)N 2 between the energy of the first excited state for
N particles and the ground state for N — 2 particles, in
both cases with maximum J, which can easily be proven.
Applying this inequality iteratively leads to

AE™ 1
—<H>N72 T = 5(1 + +1 — 4A), 9)
where
(AH?)y
(H)n—2 = (H)y)(H)y-q = (H)y-2)

By choosing the trial function of the ground state close
to the exact one it is possible to achieve 4A <1,
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A >

(10)

ie., AEN) ~(H)y_, — (H)y. For the simple trial func-
tion |[W™M) = a,|m, = 0) + aylm, = —N/2) one finds
(H)n—> = (H)y = BAlI£IX1 X2lmax, Where B is a numeri-
cal factor of order unity, which varies only very slowly
with N. Thus a reasonable estimate for the energy gap in
case (iii) is given by BA|&|x3. This is also confirmed by
our numerical calculations for particle numbers up to
N = 50.1If BA|€] x5 is sufficiently larger than the thermal
energy of the environment, the probability of decoherence
processes is strongly suppressed.

Let us now discuss a possible implementation of the
Lipkin Hamiltonian (1) with & = 0 in an ion-trap system.
Consider a linear trap with a string of ions with two
relevant internal levels |g) and |e). The ions are assumed
to be cooled such that only the in-phase collective oscil-
lation of all ions is excited. The corresponding oscillation
frequency is denoted by ». The two internal levels of the
ions are coupled by two laser fields with frequencies w,
and w,, and slowly varying Rabi frequencies {); and ().
Assuming that both fields couple all ions in the same way,
we can describe the system by the Hamiltonian H =
H, + H,,, where H, = hvéte + ﬁwegjz, ¢ and ¢t being
the annihilation and creation operators of the trap oscil-
lation. fiw,, is the energy separation between the two
internal states and J, = 3> (ol, — ot,), with o, , =
| );:{ | being the projector to the internal state |u) of the
ith ion. The interaction Hamiltonian H;, is given in
rotating wave approximation by

Hy, = j+ein(6+6f)[ﬂle—iwlt + Qze—iwzt] +He, (11

where 7 is the Lamb-Dicke parameter. We assume that the
laser frequencies have equal and opposite detuning o
from resonance w,, = w,, = §. 0 is assumed to be large
compared to the linewidth of the resonance but suffi-
ciently different from the frequency of the trap oscilla-
tion, ie., |8, |v* 8> 7y. As a consequence, the
dominant processes are two-photon transitions leading
to a simultaneous excitation of pairs of ions as indi-
cated in Fig. 2. For {}; = (), this scheme has first been
considered by Sgrensen and Mglmer [8,16] in the context

|een)

FIG. 2. Excitation scheme of pair of ions with ground state
|g) and excited state |e) by bichromatic laser fields of equal and
opposite detuning 6. n denotes the quantum number of trap
oscillation.
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FIG. 3 (color online). Numerical simulation of the adiabatic
transfer for a system of four ions. Shown are populations in
states |m, =0) and |m, = *J) for Q,(1) = (a/2) X
[tanh(z/T;,) + 1] as shown in the inset and for a/v = 0.6,
vT, = 2000, vT, = 1500, and 6/v = 0.9 (a), case (i); and
8/v = 1.1 (b), case (iii).

of quantum computation and dynamical entanglement
generation.

We now assume that the ion trap is in the Lamb-Dicke
limit, i.e., that the ions are cooled sufficiently enough,
such that for all relevant excitation numbers »n of the trap
oscillation (n + 1)n> < 1 holds. In this limit one can
expand the exponent in (11) to first order in 7. For large
values of |§] it is convenient to consider this interaction in
terms of a coarse-grained Hamiltonian which neglects
the effects of rapidly oscillating terms. Using the time-
averaging method of Ref. [17] one arrives at an effective
Lipkin Hamiltonian (1) with the identifications ¢ =
QvnH)/(82 = v?), A=2/&8, and x;,=Q;FQ,.
Q, = Q, corresponds to the case y; = u =0 in (1)
which is exactly solvable and has been discussed in
Refs. [8,16]. It has also been shown in [8,16] that the
effective Hamiltonian describes correctly the dynamics
of the ions in a coarse-grained time picture. Furthermore,
the coupling scheme has successfully been implemented
in experiments to generate entanglement between four
ions [4].

In Fig. 3 we have shown as an example the effective
dynamics of a system of four ions driven by fields {}; and
), for the cases (i) and (iii) following Eq. (1) with u = 0.
One recognizes that a nearly perfect transfer is possible.

In summary, we have shown that it is possible to
generate specific entangled many-particle states in an
ensemble of spins interacting through a collective cou-
pling of the Lipkin-Meshkov-Glick type by adiabatic
ground-state transitions. Two scenarios, (i) and (ii), in-
volve a twofold degenerate ground state at some stages
while two others, (iii) and (iv), always have a nondegen-
erate ground state. In all cases there is a finite energy gap
to other excited states. This gap can be rather large, and
thus fast processes are possible despite the required adia-
baticity. In the asymptotic limits of the adiabatic transfer,
the spectrum and eigenstates of the LMG Hamiltonian
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can be exactly calculated. Furthermore, for A = 1 there
is a supersymmetry allowing for an explicit construction
of the ground state for all times. Because of adiabaticity,
all transitions are robust against parameter variations.
Furthermore, due to the symmetry of the coupling and
the finite energy gap from the (degenerate or nondegen-
erate) ground state to excited states, collective decoher-
ence processes are suppressed. In addition, in the case of a
nondegenerate ground state [cases (iii) and (iv)] also in-
dividual decoherence processes are suppressed. The col-
lective spin Hamiltonian can be implemented in a cold
ensemble of ions in a linear trap driven by nearly reso-
nant bichromatic fields.
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