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Mean First Passage Time for Nuclear Fission and the Emission of Light Particles

Helmut Hofmann' and Fedor A. Ivanyukl’2
'Physik Department, TUM, D-85747 Garching, Germany

Institute for Nuclear Research, 03028 Kiev, Ukraine
(Received 20 December 2002; published 3 April 2003)

The concept of a mean first passage time is used to study the time lapse over which a fissioning
system may emit light particles. The influence of the “transient” and ‘“‘saddle to scission times’” on this
emission are critically examined. It is argued that within the limits of Kramers’s picture of fission no
enhancement over that given by his rate formula needs to be considered.
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Introduction—Fission at finite thermal excitation
is characterized by the evaporation of light particles
and y. Any description of such a process must rely on
statistical concepts, both with respect to fission itself as
well as with respect to particle emission. For decades, it
has been customary to describe experiments in terms of
particle [1] and fission widths, where the former, I, is
identified through the evaporation rate and the latter I'; is
given by the Bohr-Wheeler formula I'; = I'gy for the
fission rate. Often in the literature this is referred to as the
“statistical model.” It was only in the 1980s that discrep-
ancies of this procedure with experimental evidence was
encountered: Sizably more neutrons were seen to accom-
pany fission events than given by the ratio I', /I'gw (for a
review, see, e.g., [2]). A possible enhancement of that ratio
is found if the fission width I'gy is replaced by the 'k of
Kramers [3]. In this seminal paper, he pointed to the
deficiency of the picture of Bohr and Wheeler in that it
discards the influence of couplings of the fission mode to
the nucleonic degrees of freedom. Such couplings will in
general reduce the flux across the barrier, mainly because
of the reduction of the energy in the fission degree of
freedom Q which may then fall below the barrier. This Q
is meant to represent the most likely path in a multi-
dimensional landscape of shape degrees of freedom.

In Kramers’s picture, this effect is realized through the
presence of frictional and fluctuating forces (intimately
connected to each other by the fluctuation dissipation
theorem). Presently, it is understood that Kramers’s
“high viscosity limit” applies (for a microscopic justifi-
cation see [4,5]), in which case the rate formula writes
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Here, T and E,, stand for temperature and barrier height,
w, for the frequency of the motion around the minimum
at Q0 =0, and 7, = (y/2Mw), for the dissipation
strength at the barrier (at Q = Q,), with y being the
friction coefficient and M the inertia. For the sake of
simplicity, we will assume these coefficients not to vary
along the fission path; otherwise the formula must be
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modified [5]. For vanishing dissipation strength (1) re-
duces to the Bohr-Wheeler formula (simplified to the case
that the equilibrium of the nucleons can be parametrized
by a temperature).

Commonly, formula (1) is derived (see, e.g., [6]) in a
time dependent picture solving the underlying Fokker-
Planck equation for special initial conditions with respect
to the time dependence of the distribution function [7].
Their choice is intimately related to the picture of a
compound reaction, in that the decay process is assumed
to be independent of how the compound nucleus is pro-
duced. The latter in a sense represents a nucleus in a
quasiequilibrium such that the previous, preequilibrium
stages need not be considered explicitly. This assumption
is valid as long as the decay of that system takes longer
than the equilibration time. To some large extent, such a
situation is indeed given at not too high excitations, as
then the nucleons may stay inside this nuclear complex
for a sufficiently long time. However, the circumstances
are less clear with respect to the collective modes, in
particular, to the fission degree of freedom itself—which
for large damping probably is among the slowest ones
present. Whereas the corresponding kinetic momentum
P = MQ may safely be assumed to equilibrate suffi-
ciently fast, this may not be so for the coordinate Q.
Thus, assuming the system to be located initially around
the supposedly pronounced “‘ground state” minimum of
the static energy at Q = Q,, the initial width in Q may
still be at one’s disposal. In its true spirit, the compound
picture would suggest taking the equilibrium value, de-
termined by the temperature and, in harmonic approx-
imation, by the stiffness of the potential. Often, however,
one starts with a sharp distribution of zero width. In any
case, the current across the barrier needs some finite time
to build up. This apparent delay of fission was interpreted
[8,9] as if there was the additional possibility of emitting
light particles beyond the measure given by I',/I'x >
1—‘n/l—‘BW'

If besides collective motion also particle emission is
studied explicitly in a time dependent picture, as done in
the Langevin approach [10,11], such an effect is included
automatically. Problems arise, however, if one tries to
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imitate this delay in statistical codes which are in use for
analyzing experimental results. Such codes apply static
probabilities derived in time independent reaction theory.
It is not obvious how this method may be reconciled with
the picture of fission delay, the ““transient effect.”” In the
present Letter, we shed some light on this problem by
exploiting the concept of a mean first passage time
(MFPT). Before we come to that, we want to examine a
little closer the time dependent case. We will concentrate
on overdamped motion, as in this case the MFPT can be
evaluated from an analytic formula. Moreover, for slow
motion the transient time gets larger, such that the feature
we want to discuss becomes even more obvious.

Time dependent current across the barrier—In the
time dependent picture just described, the boundary con-
ditions in Q (and P if present) are chosen to make sure
that the distribution vanishes at infinity. Calculations
of the current j() across the barrier then typically imply
a behavior as exhibited in Fig. 1. In all cases, the
asymptotic value of j,(f) is seen to follow the law
'k exp(—T'x t/h), shown by the fully drawn straight
line. The differences at short times are due to the follow-
ing different initial conditions.

(i) For the dashed and dotted curves, the system starts
out of equilibrium in Q; the dashed curve corresponds to
the current at the barrier j,(r) = j(Q,, ) and the dotted
one to that in the scission region j..(f) = j(Q,. ), beyond
which the fragments separate. The equilibrium is defined
by the oscillator potential by which the V(Q) around Q,
may be approximated.

(ii) For the fully drawn line, the system starts at Q,
sharp. The obvious delay by about (5-10) X 102! sec is
essentially due to the relaxation of Q to the quasiequili-
brium in the well. This feature is demonstrated on the
right by the ¢ dependence of the width in Q [exhibited in
terms of fluctuations of the potential energy CX,, =
C(0* —(0P)/21.

The figure clearly demonstrates remarkable uncertain-
ties in the very concept of the “transient effect.” First of
all, it is seen that the transient time 7,,,, defined as
the time the current j,(z) needs to reach its asymptotic
behavior, depends strongly on the initial conditions.
Moreover, there is considerable arbitrariness in choosing
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FIG. 1. The current across the barrier for different initial
conditions (see text).
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time zero: If the calculation were repeated at some later
time #y > Ty, the same features would be seen. In the
end, this is due to the very fact that the whole effect only
comes about because in the initial distribution there are
favorable parts for which it is easiest to reach the barrier.
This is demonstrated in Fig. 2. There, those points of the
initial equilibrium are sampled which cross the barrier
after some given time 7. On the right, a sufficiently large
T, was chosen such that greater parts of the initial dis-
tribution have “‘fissioned.” As exhibited on the left, for
the much shorter time 7, =~ 7,,,, only a small fraction of
points have succeeded in doing this, namely, those which
started close to the barrier (for underdamped motion also
more favorite initial momenta would play a role; see
[12,13]). The vast majority of particles are still waiting
to complete the same motion but at later times. This
aspect is important, not only for an understanding of
the essentials of the concept of the MFPT [14-16], but
also in respect to the evaporation of neutrons. Indeed,
even for T = t > 7y, there is ample time for them to
be emitted from inside the barrier.

The calculations have been performed by simulating
the Langevin equations exploiting a locally harmonic
approximation similar to that of [4,6] for Kramers’s
equation, for the following parameters: T = 3 MeV,
E, =8 MeV, hw, = 1 MeV, and n, = 5. The potential
was constructed from two oscillators, one upright and one
upside down, joined with a smooth first derivative.

The mean first passage time.—Within a Langevin ap-
proach, the concept of MFPT may be described as fol-
lows. Suppose that at t = 0 particles start at the potential
minimum Q,. Because of the fluctuating force there will
be trajectories i which pass a certain exit point Q. first at
some time t;, the first passage time. The mean-FPT
Tmerr(Q, — O.y) is defined by the average (t;) over all
possibilities. In order to really obtain the mean first
passage time, the i has to be removed from the ensemble
once it has exited the interval at Q.,: The “particle” can
be said to be absorbed at Q. (such that one may speak of
an ‘“‘absorbing barrier”). As the potential V(Q) is as-
sumed to rise to infinity for Q — —o0, any motion to
the far left will bounce back: The region Q — —oo acts
as a “reflecting barrier.”” A calculation of the MFPT with
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FIG. 2. Samples of initial points which overcome the saddle
within a time 7: left part: 7, = 7,,,; right part: 7, = 7.
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the Langevin equation is shown in Fig. 3 by the
dash-double-dotted curve and seen to be very close to
the result obtained by exploiting special solutions of the
Smoluchowski equation, which we want to address now.
Fortunately, the Smoluchowski approach allows one to
derive an analytic formula for the Typr [14—16]. As one
knows, the Smoluchowski equation represents that of
Kramers for overdamped motion. For its solution
K(Q,t|Q, 0), the initial condition for the particles to
start at Q,, is given by lim,_y K(Q, 11Q,, 0) = 6(Q — Q,),
which is identical to the one used for the fully drawn line
of Fig. 1. For constant friction and temperature, one gets

TMEPT = %an du exp[V;u) :U_Moo dv exp[— @ :|

2

This expression may be derived as follows: The proba-
bility of finding at time ¢ the particle still inside the
interval (—oo, Q..) is given by W(Q, 1) = fQoo dQ X
K(Q, t| Q, 0). Hence, the probability for it to leave the
region during the time lapse from ¢ to ¢ + dr is deter-
mined by —dW = —[oW(Q,, t)/dt]dt, such that the
average time becomes Typpr(Q, — Qox) = — [tdW
which turns into

TMrpT(Qy — Qex) = fooo f_Qc K(Q,t| Q,, 0)dQ dt
- ﬁ " 4t 1j(Quns 11 0 0). 3)

These formulas are associated with the special boundary
conditions with respect to the coordinate mentioned be-
fore, the reflecting barrier at Q — —oo and an absorbing
barrier at Q.. In particular, for the latter feature it is not
permitted to use in (3) the currents shown in Fig 1.
Inserting them blindly would indeed lead to expressions
for Typpr in which the 7., appears [17]. This is in clear
distinction to the correct form (2). Actually, the deriva-
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FIG. 3. MFPT for a cubic potential normalized to its asymp-
totic value, shown by the solid, dashed, dot-dashed, and dotted
curves which correspond to T/E;, = 0.1, 0.2, 0.5, and 1.0. The
dash-double-dotted curve represents a calculation within the
Langevin approach for T/E, = 1.

132701-3

tion of (2) involves proper solutions of that equation
which is “adjoint” to the Smoluchowski equation, and
which describes motion backward in time. In Fig. 3, we
show the dependence of Typpr(Q, — Qex) On Q. as given
by (2) calculated for a cubic potential. Evidently, the
MFPT needed to reach the saddle at Q, is exactly half
the asymptotic value. The latter may be identified as the
mean fission life time 74 = Typpr(Q, — Qo > 0;,). For
the typical conditions under which Kramers’s rate for-
mula (1) is valid for overdamped motion, the identity of
T; = T¢ to the asymptotic value of the MFPT can be
proven analytically [15]. Another remarkable feature seen
in Fig. 3 is the insensitivity of the MFPT to the exit point
for small and large Q.. Actually, in clear distinction to
the transient time the MFPT is also insensitive to the
starting point. This latter property shall be exhibited in a
forthcoming paper [13].

As a most interesting feature, the MFPT can be calcu-
lated also for cases of small barriers where Kramers’s
formula does not apply. We show in Fig. 4 results of
evaluations of formula (2) for £, = 1 MeV as well as
for a practically vanishing barrier. It is seen that even in
the latter case the Typpr(Q, — Q) reaches a plateau for
sufficiently large Q.. This asymptotic value, however, is
no longer determined by 7. Nevertheless, the Tygpr
seems to be long enough for neutrons to be evaporated
before scission. This may be seen as follows. The neutron
width typically is of the order of 1-3 MeV (for medium
heavy nuclei [10]). According to [5], the y/C roughly
increases linearly in T, being about 1/i/MeV at T =
2 MeV and about 37i/MeV at T = 3 MeV. Taking the
values of Typpr from the right part of Fig. 4 and close
to the plateau, one gets a width ['ygpr = i/ Typpr Of the
order of 0.9-2.3 MeV, and thus comparable to the neutron
width. Figure 4 also shows that a small increase of the
barrier by 1 MeV enlarges the 7ypy drastically.

Discussion.—It should be evident from the previous
discussion that in the very concept of the MFPT there is
no room for a transient effect. After all, formula (2) is
based on exact solutions of the transport equation which
satisfy the same initial condition as those used for the
plots in Fig. 1—albeit different boundary conditions in
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FIG. 4. The MFPT for the case of small and vanishing

barriers for T =2, 3, and 4 MeV from top to bottom. The
Q.. corresponds to a scission point 20 MeV below the barrier.
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coordinate space. Moreover, as exhibited in Fig. 2, the
evaluation of the MFPT takes into account an average
over all initial points, as is warranted by the definition of
the MFPT through the probability distribution —dW.
Contrasting this feature, and as outlined in the second
section, the transient effect only represents a minor part
of the initial population, namely, that one which reaches
the barrier first. Discarding the rest implies ignoring the
many particles which are still moving inside the barrier
for times typically much longer than 7,,,. Hence, neu-
trons from deformations corresponding to that region
may not only be emitted within 7., but within
mmepr(Q4 — Op), Which turns out to be just half of the
total fission time 7. Of course, this discussion shows that
it is also not correct to argue in favor of “‘additional”
neutrons which might be emitted within the saddle to
scission time 7. introduced in [18]. As one may guess
from Fig. 3, like the 7., the 7. does not appear to be in
accord with the MFPT either: The time the fissioning
system stays together is not determined by motion in
the immediate neighborhood of the barrier. On average
it takes half the full decay time to move beyond the Q,, to
the Q. at which the 7gpy reaches its plateau value.
These findings suggest that one simply estimates the
emission rate of neutrons over fission from the ratio
', /Tx—provided one may trust the potential to be of
the simple form underlying the rate formula (1). Anything
else does not seem to be in accord with an appropriate
application of Kramers’s or Smoluchowski’s equations.
This does not rule out other, complementary effects
which originate in more complicated situations. For in-
stance, in the case that in the scission region the potential
becomes flat again or even develops a minimum, the
system is forced to stay there longer than given by the
7 of Eq. (1)—implying additional time for evaporating
neutrons. Likewise, it is conceivable that the initial stage
of the whole reaction is to be described with a different
transport model. Such modifications are already sug-
gested when the average neutron emission time 7, be-
comes comparable to or even smaller than the relaxation
time 7., for the nucleonic degrees of freedom as a
whole. Transport equations are justified only if this
Tmicro 1S the smallest time scale present, in comparison
to both neutron emission as well as to collective motion.
The Thige turns out to be of the order of (1-2) X
10722 sec, no matter whether it is estimated within linear
response theory with collisional damping or within a
random matrix approach (see [4]). Applying the
Weisskopf estimate for the neutron emission time (or
modified versions of it) [10] at large temperatures one
easily gets values of 7, of the order of or smaller than
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Tmicro- Lhis reflects a situation of preequilibrium rather
than that assumed in the quasistatic picture necessary for
the application of Fokker-Planck equations. In conclu-
sion, we may say that deviations of experimental results
from the standard value of I',/T'x ought perhaps to be
understood as a strong indication of the relevance of these
complementary effects, which unfortunately have for the
most part been unconsidered. This might require one to
reexamine analyses of experiments which over the past
decade or so have followed the conventional line.
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