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We present a self-consistent determination of the screening mass for chromomagnetic fields in QCD
within the framework of dimensional reduction. The three-dimensional Chern-Simons density is used
as a mass term for a self-consistent perturbative calculation that yields a value of m � 1:604�g2N=2��T
for the magnetic screening mass.
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The perturbative expansion of thermal gauge theories
is well known to be plagued by infrared divergences that
render perturbative computations of most quantities im-
possible, as first noted by Linde [1]. In order to overcome
these difficulties, several effective field theories have been
proposed [2,3]. These are based on the concept of dimen-
sional reduction, where the static Matsubara modes of the
thermal theory are described by an effective theory in
three-dimensional Euclidean space, with the other modes
(and any fermions) integrated out. For the chromomag-
netostatic modes of QCD, the lowest-order effective
theory is the conventional Yang-Mills theory in three
dimensions, with dimensionful coupling g3 � g

����
T

p
.

In three dimensions, the dynamical generation of a
gluon mass is expected. Unfortunately, a perturbative
evaluation of this mass is not possible, for similar reasons
as in the finite-T case: The superrenormalizability of the
theory in three dimensions leads to infrared divergences
beyond the one-loop level, and no mass for the chromo-
magnetic modes is generated at one-loop. In order to
determine the magnetic screening mass within the frame-
work of perturbation theory, one will therefore have to
resort to self-consistent approximations.

In this Letter, we show how the Chern-Simons
Lagrangian can be used in the context of a self-consistent
resummation system, and discuss some of the potential
problems with our approach, and why some of these
problems might actually be considered as advantages.

Methods.—The Chern-Simons Lagrangian in three
(Euclidean) dimensions is given by [4]

LCS � �im	
��tr
�
A
@�A� �

2g3
3

A
A�A�

�
; (1)

and is gauge-invariant (up to a total divergence) under
small gauge transformations. For invariance of the
action under large gauge transformations one needs the
condition
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For the purposes of doing perturbation theory, however,
small gauge invariance is all that is needed, as perturba-
tion theory does not experience contributions from non-
trivial vacua. We will therefore regard m as an arbitrary
parameter with no a priori relation to g3.

If a Chern-Simons term is added to the standard Yang-
Mills Lagrangian, the gauge fields acquire a mass from
the quadratic part of LCS, and the bare gluon propagator
in a covariant gauge becomes

Dab

��p� �

�
p2�
� � p
p� �m	
��p�

p2�p2 �m2�
� �

p
p�

�p2�2

�
�ab;

(3)

while the three-gluon vertex receives a momentum-
independent extra contribution igmfabc	
�� from the
cubic part of the Chern-Simons Lagrangian. The propa-
gator is manifestly infrared safe only in the Landau
gauge � � 0, while in other covariant gauges spurious
infrared divergences appear. While a cautious handling
should be able to remove these infrared divergences from
all physical quantities, we will not concern ourselves with
those subtleties, and work exclusively in Landau gauge for
reasons of convenience.

It is easily apparent that the Chern-Simons Lagrangian
is odd under parity, hence adding it to a Yang-Mills action
violates the parity invariance of the latter. This implies
that the mass can have either a positive or a negative sign;
as we are only interested in the position of the pole, which
depends only on the square of the mass, we are free to
chose the mass to be positive in all our calculations.

A self-consistent resummation scheme is normally
based on adding a quadratic (parity-even) mass term to
the Lagrangian and resubtracting it as a counterterm
fixing the pole of the propagator at p2 � �m2:

L � L0 �m2Lm � �m2Lm; (4)

while demanding �m2 � m2 in order not to change the
original theory, leading to a gap equation
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where ��p2� is the perturbative shift of the inverse
propagator from its free form.

For the Chern-Simons mass term, which is only linear
in the mass, a slightly modified scheme is needed. The
Lagrangian with the mass term added and subtracted
reads

L � L0 �mLCS � �mLCS; (6)

where L0 is the standard Yang-Mills Lagrangian, and we
demand

�m � m (7)

while considering �m as a counterterm that fixes the pole
of the propagator at p2 � �m2.

By adding the Chern-Simons term to the Lagrangian,
we have changed the admissible tensorial structure of the
self-energy, which may now have a parity-odd part:

�
��p� � �p2�
� � p
p��A�p
2� �m	
��p

�B�p2�; (8)

where the parity-even part A�p2� can be isolated by con-
tracting with a symmetric tensor such as �
� �
��p
p�=p2�, while the parity-odd part B�p2� may be
isolated by contraction with 	
��.

Taking into account that �m � m, the inverse propa-
gator turns out to be

D�1

��p� � �p2�
��p
p��	1�A�p2�
�m	
��p

�B�p2�;

(9)

such that the resummed propagator becomes

D
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	1�A�p2�
�p2�
��p
p���B�p2�m	
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	1�A�p2�
2p2fp2�	 B�p2�

1�A�p2�
m
2g

:

(10)

To keep the pole of the propagator fixed at p2 ��m2, we
have to demand

B��m2� � 1�A��m2� (11)

as the appropriate gap equation for the self-consistent
determination of the magnetic mass with a Chern-
Simons mass term.

Results.—Adding the Chern-Simons Lagrangian does
not change the number or topology of the Feynman
diagrams for the theory. The one-loop self-energy is
therefore given by the sum of the same three diagrams
as in the nonmassive pure gauge theory.

Let us first compute B��m2�. The only contributions to
the parity-odd part of the gluon self-energy come from
the diagram with two three-gluon vertices, because the
external index structure of the other diagrams has not
been changed by the addition of the Chern-Simons term.
The contraction of this diagram with the 	 tensor yields
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Z d3k

�2��3


�k2p2 � �k � p�2��5k2 � 5k � p� 4p2 � 2m2�

k2�k2 �m2��k� p�2��k� p�2 �m2�
:

(12)

This integral is convergent both in the infrared and the
ultraviolet. For our purposes, we need to continue it to
p2 � �m2. Since there is a threshold and corresponding
cut in the complex plane at p2 � 0, coming from the p2

term in the denominator of the propagator (3), we have to
assure the analyticity of the integral by making sure that
no poles of the integrand cross the axis of integration.
Since the problematic poles are those from the �k� p�2

term in the denominator of the integrand, this can be
done by rotating the axis of integration by the same phase
as p: For p � ei�m, take arg�k� � �� 	, with 	 infini-
tesimally small. Using this prescription, we can evaluate
the integral numerically as

B��m2� � 	0:1677�3� � 0:0160�5�i

g23N
m

:

For an analytic calculation this prescription is slightly
awkward. We can, however, still calculate the integral
without recourse to any regulator by noticing that, since
k and  enter the integral only via the combinations k2,
cos2 and k cos , we can replace the

R
1
0 dk

R
1
�1 d cos 

integration by a
R
1
�1 dk

R
1
0 d cos one, which can be per-

formed analytically using the residue theorem. Alterna-
tively, we could use partial fractions for a straightforward
evaluation of the integral (where, however, a regulator
such as dimensional regularization needs to be em-
ployed). Continuing p ! im, we finally find the value

B��m2� �

�
1

8
�

27

32
log3

�
g23N
2�m

� i
g23N
64m

for the odd part of the self-energy at the pole, which
agrees perfectly with the numerical result obtained using
the rotated contour.

The computation of A��m2� is a bit more subtle.
Superficially, A��m2� contains linear divergences, and
while these would disappear using, e.g., dimensional
regularization, it seems that the value of A��m2� would
be dependent on the regularization scheme used. Since
A��m2� enters the gap equation (11), this would render
the self-consistent mass regulation dependent, thus in-
validating the entire procedure. Fortunately, the situation
is yet a bit more subtle: On dimensional grounds, it is
known that the factor multiplying p
p� in the self-energy
must be ultraviolet convergent in three dimensions. Gauge
invariance, however, implies that the parity-even part of
the self-energy is of the form ��
�p

2 � p
p��A�p
2�, and

hence the divergences in A�p2� must disappear for any
gauge-invariant regulator, so as to render the value of
A�p2� regulator independent. We choose to evaluate
A��m2� in a manifestly regulation-independent fashion
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by identifying the self-energy integral multiplying p
p�, which can be isolated by contracting with the projector
�
� � 3�p
p�=p

2�.
The integral which then needs to be evaluated is

A�p2� �
g23N

4p4

Z d3k

�2��3
1

k2�k2 �m2��k� p�2��k� p�2 �m2�

 	�8k6p2 � 24k4�k � p�2 � 8k4�k � p�p2 � 36k2�k � p�3 � 8k4p2m2 � 14k4p4 � 24k2�k � p�2m2

� 66k2�k � p�2p2 � 12�k � p�4 � 14k2�k � p�p2m2 � 12k2�k � p�p4 � 18�k � p�3 � 4k2p2m4 � 4k2p6

� 12�k � p�2m4 � 24�k � p�2p2m2 � 4�k � p�2p4 � 8�k � p�p2m4 � 8�k � p�p4m2

As above, we have to either rotate the integration contour
for a numerical evaluation yielding

A��m2� � 	�0:0881�2� � 0:0165�5�i

g23N
m

or perform the integral analytically (making use of a
computer algebra program for obvious reasons) and take
the limit p ! im afterwards to obtain

A��m2� �

�
3

8
�

27

32
log3

�
g23N
2�m

� i
g23N
64m

;

which again agrees with the numerical result.
The self-energies of Chern-Simons massive three-

dimensional Yang-Mills theory have previously been
evaluated within the frameworks of dimensional regu-
larization [4–6] and differential regularization [7], re-
spectively. It was found that, despite some controversy as
to whether ambiguities might arise from the continuation
of the totally antisymmetric 	-tensor to d dimensions,
the results in both regularization schemes agreed. Here,
we have shown that the self-energies of Chern-Simons
massive three-dimensional Yang-Mills theory are indeed
finite and regularization independent for any gauge-
invariant regulator.

With both parts of the self-energy at hand, we can now
proceed to solve the gap equation (11). Multiplying both
sides by m yields a value of

m �

�
27

16
log3�

1

4

�
g23N
2�

� 1:604
g23N
2�

(13)

for the magnetic mass. We note that the Ward identities of
the theory [5] ensure =�A��m2�� � =�B��m2�� so that
the self-consistent mass will always be real.

Discussion.—There have been several self-consistent
studies of the magnetic mass using parity-even quadratic
mass terms:

Alexanian and Nair [8] have proposed a mass term that
is related to the generating functional for hard thermal
loops, and have obtained the mass

mAN �

�
21

16
log3�

1

4

�
g23N
2�

� 1:192
g23N
2�

: (14)

Buchmüller and Philipsen [9] have coupled a Higgs
field in the symmetric phase to the gluons and have found
132001-3
a gluon mass of

mBP �

�
63

64
log3�

3

16

�
g23N
2�

� 0:894
g23N
2�

: (15)

The results of Buchmüller and Philipsen have been ex-
tended to two loops by Eberlein [10], who found

mEb � 1:052
g23N
2�

; (16)

which indicates a small, though nonnegligible, contribu-
tion from higher loop orders to the one-loop results.

Cornwall [11] has used a ‘‘pinch’’ technique for the
determination of the gluon mass and has obtained

mCo �

�
15

16
log3�

1

4

�
g23N
2�

� 0:780
g23N
2�

: (17)

A purely nonperturbative determination of the mass
gap in �2� 1�-dimensional Yang-Mills theory has been
carried out by Karabali, Kim, and Nair [12]. Using a
functional Hamiltonian approach, they find that, to
lowest-order in an enhanced perturbative expansion,
three-dimensional Yang-Mills theory is a theory of mas-
sive interacting colored particles with mass

mKKN �
g23N
2�

: (18)

This agrees well with a recent lattice study by
Philipsen [13], who uses the mass splittings between
0�� and 1�� bound states of heavy scalars in the static
limit to determine a parton mass of

mP � 0:360�19�g23 � 1:131�59�
g23N
2�

(19)

for the three-dimensional SU(2) gluon.
The similarity between these nonperturbative results

and the perturbative calculations above lends credibility
to the assumption that a magnetic screening mass of order
�g23N=2�� is generated for the chromomagnetostatic
modes in the QCD plasma. We also note the tantalizing
fact that the nonperturbative result mKKN obeys the con-
dition (2). The result obtained with the Chern-Simons
term is almost a factor of 2 larger than those obtained
using parity-even mass terms.
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Compared to quadratic mass terms, the Chern-Simons
term has the apparent disadvantage of being odd under
parity, thereby breaking the parity invariance of the
original theory. However, we do not necessarily consider
this a disadvantage, for the following reason: The
thermal ground state of the plasma is not the vacuum.
Parity-odd terms made up from chromomagnetic and
chromoelectric fields may have a nonvanishing expecta-
tion value if something like a chromodynamic dynamo
effect takes place in the plasma, breaking the parity
invariance of the action. The fact that in this case the
symmetry breaking necessary to have a nonvanishing
Chern-Simons term in the action has to be caused by
effects in the plasma, opens the interesting possibility
of having a domain structure within the plasma, where
different regions correspond to different signs of the
Chern-Simons mass. If this were the case, one would
have to sum over both signs in calculating long-distance
contributions to thermodynamic quantities with a Chern-
Simons massive gluon. The existence of a domain struc-
ture would also imply the existence of domain walls
separating the two phases, that would have their own
(purely nonperturbative) mass scale associated with
them, which would also have to be taken into account in
determining the long-range dynamics of the plasma. The
question of a possible domain structure in the plasma, and
possible observable consequences of parity breaking in
the plasma certainly deserve further research.

Another apparent problem lies in the appearance of the
p2 term in the numerator of the propagator (3), which as
seen above leads to a branch point at p2 � 0, and seems to
preclude exponential screening of chromomagnetic fields.
However, as noted by Deser, Jackiw, and Templeton [4],
and by Pisarski and Rao [5], no massless intermediate
states may contribute to the expectation values of gauge-
invariant operators, so that the physical long-range inter-
132001-4
actions would still be screened. In principle, this could be
demonstrated by computing the static quark potential,
which should not contain a massless contribution.

We conclude that the Chern-Simons term cannot be
excluded a priori on the grounds that it is forbidden by
symmetry, and therefore must be included in the effective
Lagrangian. From there, our self-consistent calculation
shows that it is possible to have a nonzero value for the
Chern-Simons mass. There are, however, many problems
with the Chern-Simons term as a mass term for the gluon,
and further research is certainly needed in order to arrive
at any definite conclusions about its possible role in
chromomagnetic screening.
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