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Anomalous Tunneling of Phonon Excitations between Two Bose-Einstein Condensates
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We discuss the tunneling of phonon excitations across a potential barrier separating two condensates.
It is shown that a strong barrier proves to be transparent for the excitations at low energy ". Moreover,
the transmission is reduced with increasing " in contrast to the standard dependence. This anomalous
behavior is due to the existence of a quasiresonance interaction. The origin of this interaction is a result
of the formation of a special well determined by the density distribution of the condensate in the
vicinity of a high barrier.
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consider a one-dimensional symmetrical configuration
The investigation of tunneling phenomena in Bose-
Einstein condensed systems becomes one of the most
evolving trends in the Bose-Einstein condensation studies
of ultracold atomic gases (see, e.g., [1] and references
therein). The possibility to create a potential barrier for
atoms using resonant laser light as a sheet or by using it
as an optical lattice led to numerous experimental studies.
The great advantage of this method is due to the fact that
barrier forming in this way does not destroy the conden-
sate, and one can change the barrier by simply changing
the intensity of light. One of the interesting aspects in
this field is associated with the problem of tunneling of
collective excitations possessing specific features in the
condensed phase. A condensate moving at velocity v
smaller than some critical velocity vc transmits across
a potential barrier without scattering and reflection.
Excitations of a condensate at rest, in particular, sound
excitations, should experience the tunneling transmission
together with the reflection. It is significant that the
motion of excitations takes place at the background of
the inhomogeneous built-up distribution of the conden-
sate density g�x�. The inevitable reduction of g�x� near
the barrier results in the appearance of a potential well.
For a sufficiently high barrier V � �, where � is the
chemical potential, the tunneling of excitations, as we
will see below, demonstrates an anomalous character. On
the one hand, the barrier proves to be transparent for
phonon excitations within a limited range of low ener-
gies. On the other hand, the coefficient of tunneling trans-
mission T reduces as the energy of excitations " grows.
This is in contrast to the typical growth of T with ". Such
anomalous behavior is associated with the appearance of
a quasibound state in the continuous spectrum. The for-
mation of the quasibound state is connected with the
specific behavior of function g�x� in the vicinity of the
barrier. Provided the size L of the condensate is much
larger than the correlation length 
 � �h�m���1=2 and the
barrier is high, the dependence g on x shows a universal
character. As a result the anomalous tunneling shows
universal character as well.

To get results in a more straightforward way, we
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formed by two identical condensates separated by a rect-
angular barrier with a height V0 � �. The general equa-
tion for the Heisenberg field operator of particles �̂��x; t�
reads
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Hereafter it is implicitly assumed that the transverse size
of the system is sufficiently large. Accordingly, a collision
of atoms has a three-dimensional character and, as usual,
we take for the interaction U � 4� �h2a0=m, where a0 is
the scattering length. We consider only the case a0 > 0.

We start from the consideration of the ground state
assuming temperature T � 0. In this case, the operator
�̂� can be replaced by the macroscopic condensate wave
function ��x�. The equation for ��x� in the dimension-
less form can be written as
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Here we introduced the following notations:

�xx � x=
; �tt � �t= �h; ��� � ��U=��1=2;
�VV � V=� � �V0=����a� jxj�:

(3)

Further on we shall omit the bar for all variables in
Eq. (2).

Let us find a stationary solution �0�x� of Eq. (2),
assuming that �0�x� � 1 for jxj � 1. Outside barrier
Eq. (2) has the well-known static solution

�0�x� � tanh�jxj � x0�: (4)

Under the barrier, we can find the first integral of Eq. (2),
taking into account the condition �0

0�0� � 0,
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Here b2 � �2�0�, �20 � 2�V0 � 1� � b2. The general solu-
tion takes the form
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; q �
�0�����������������
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q ; (6)
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where cn�u; q� is the Jacobi elliptic function (see,
e.g., [2]).

In the case of a strong barrier when �0 � 1 and
�0d > 1 (d � 2a is the barrier width), one can neglect
the nonlinearity related to the interparticle interaction.
Equating solutions (4) and (6) and their derivatives at the
boundary of the barrier jxj � a, we derive

�0�x� 	 ��0 sinh�0a��1 cosh�0x; �0�a� 
 ��1
0 � 1:

(7)

Let us now consider the tunneling of excitations
propagating at the background of the distribution of the
condensate density. These excitations can be found as
oscillations of the classical field of a condensate (see,
e.g., [3]). For this purpose, let us represent the function
� in Eq. (2) as � � �0 ��0 and linearize the equa-
tion in �0,
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� V�x� � 2g�x� � 1; g�x� � �2

0�x�: (9)

For excitations with energy ", we will seek the solution
of a set of Eqs. (8) for �0 and �0� in the form [3],

�0 � u�x�e�i"t � v��x�ei"t: (10)

Then we have

�ĥh � "�u� gv � 0; � gu� �ĥh � "�v � 0:

Introducing the notations

S � u� v; G � u� v; (11)

and combining these equations, we arrive at a fourth-
order differential equation,

�ĥh � g��ĥh � g�S � "2S: (12)

If the solution of S�x� is known, one can readily find the
function G�x�,

"G � �ĥh � g�S: (13)

Far from the barrier at jxj � 1, we have g�x� ! 1. The
solutions of Eq. (12) in this uniform region are sought as
S� exp�ikx�. As a result, we find four roots,
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(14)

The first two roots correspond to the Bogoliubov spec-
trum (in the dimensional variables k! k
 and "! "=�,
respectively). The solutions corresponding to k3;4 do not
contribute to the asymptote of the general solution at
jxj � 1 but prove to be significant in the regions close
to the barrier. For "� 1, we have

k � "; q � 2; (15)
neglecting terms of order "2.

Outside the barrier the general solution can be repre-
sented as a linear superposition of the solutions Sn�x� of
130402-2
Eq. (12) corresponding to the roots given in (14). Let the
excitations come from the left-hand side. Then, omitting
the divergent components, we have

S�x� � AS1�x� � BS2�x� � CS3�x�; x <�a;

S�x� � DS1�x� � FS4�x�; x > a:
(16)

Here the functions Sn�x� for fixed " have a universal form

Sn�x� � eiknx
�
tanh�jxj � x0� �

ikn
2

sgn x
�
: (17)

G�x� can be found from (13) by conserving the same set of
coefficients to be determined as in (16).

Consider now the underbarrier region. Since g�x� �
��2
0 � 1, we first find the solution of Eq. (12) omitting
g�x�. In this case Eq. (12) can be rewritten as�

�
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� V � 1

�
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S � "2S: (18)

Inserting the solution as S� exp���x� into the equation,
we again find four roots

�1;2 � ���; �3;4 � ���; �� � �0
����������������������
1� 2"=�20

q
:

(19)

Accordingly, the general solution for the underbarrier
region reads

SB � Ke��x � Le���x �Me��x �Ne���x:

Substituting this expression into (13) together with (19),
we arrive at

GB � ��Ke��x � Le���x� �Me��x �Ne���x:

Now, employing "=�20 � 1 and "a=�0 � 1 [in
dimensional variables "=V0 � 1 and �"=V0��0a� 1
correspondingly] we can replace �� by �0. As a result,
we have

SB � �M�K�e�0x � �N � L�e��0x;

GB � �M�K�e�0x � �N � L�e��0x:
(20)

The boundary conditions at x � �a yield eight equations
for the determination of all coefficients in (16) and (20)

S��a� � SB��a� �+�; G��a� � GB��a� �,�;

dS
dx

��������a
�
dSB
dx

��������a
�-�;

dG
dx

��������a
�
dGB
dx

��������a
�.�:

(21)

In order to find the solution in the explicit form, we
focus entirely on the tunneling and reflection of collective
excitations in the sound region, corresponding to the
roots (15). In addition, we simplify a set of equations
by omitting quadratic terms such as k2, k/1, /2 (/ �
��1
0 � 1), and making use of the smallness of the coef-

ficients C and F of the order of (k; /) with respect to the
other coefficients in Eq. (16). This simplification yields
130402-2
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FIG. 1. The coefficient of tunneling transmission T, as a
function of k
 for two sets of parameters: (a) �0
 � 8,
�0d � 4; (b) �0
 � 3, �0d � 8. Dashed line corresponds to
T�k
� obtained with neglecting g�x� in the underbarrier region.
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the equalities M 
 K and N 
 L resulting from Eq.
[(21).]. Together with the boundary conditions for G
[(21),] this gives

�FF � � �DD
ik
2
; �CC � �AA

ik
2
� �BB

ik
2
; (22)

with

�FF � Fe�2a; �CC � Ce�2a; �BB � Beika;
�DD � Deika; �AA � Ae�ika:

The remaining set of four equations can be solved
straightforwardly:

�BB �
�AA
Z
��k2 � �k2 � 4/2�e�4�0a�;

�DD �
�AA
Z
4ik/e�2�0a; K �

�AA
Z
/k�k� 2i/�e�3�0a;

L �
�AA
Z
/k2e��0a; Z � k2 � �k� 2i/�2e�4�0a:

(23)

As a result, we find for the tunneling transmission of the
excitations in terms of the dimensional variables,

T �

�������DA
�������

2
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: (24)

Even for a wide barrier, the transmission coefficient dem-
onstrates practically the full transparency at

k� k� 

1



2

�0

e�2�0a:

For k� k�, but keeping k
� 1, the transmission coef-
ficient falls with increasing k:

T 

16e�4�0a

��0
�
2�k
�2

: (25)

This result is in clear contrast to the typical enhancement
of T with increasing k.

Let us now consider a more accurate solution for the
underbarrier region, involving the condensate density
g�x� in Eqs. (12) and (13). The explicit form for g�x�
can be obtained from the results (6) and (7) for �0�x�.
Numerical calculation must be performed in order to find
the solution of Eqs. (12) and (13) for this region. The
general solution implies again the use of the boundary
condition of (21). The results for the dependence T on k
are presented in Fig. 1. In these figures, the function T�k�,
obtained by ignoring g�x� in the underbarrier region, is
shown by dashed lines. The exact solution shows again the
existence of the full transparency. The only difference is a
shift of the maximum of T approaching k � 0. With
increasing k, in particular, in the region where the asymp-
totic expression (25) is correct, both curves coincide. We
intentionally have chosen quite different sets of parame-
ters in Figs. 1(a) and 1(b) in order to demonstrate the
130402-3
rather universal character of the T�k� dependence. In fact,
shown only is the change of the scale of the k region
where the transparency is high.

The anomalous behavior of the tunneling transmission
of excitations has an interesting origin. In the vicinity of
the barrier, the condensate density decreases as
tanh2��jxj � x0�=
�, producing potential wells for the ex-
citations on both sides of the barrier. In the case of a
strong barrier, the condition �jxj � x0�=
� 1 holds. In
this case, a virtual resonance level in the continuous
spectrum close to " � 0 appears. This results in the
drastic change of the tunneling picture. As k increases,
130402-3
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the quasiresonance scattering decreases, entailing the
unusual reduction of T�k�. At k
� 1, the role of the
virtual level reduces and the normal growth of T with k
should be restored. We can see it from the insets of
Figs. 1(a) and 1(b), where the dependence T�k� is plotted
just for this interval of k. Note that in all cases the
anomalous tunneling can be revealed considering the
reflection coefficient,

R � jB=Aj2 � 1� T: (26)

Treating the tunneling of phonon excitations, it is
interesting to trace the formation of the energy flux Q.
This flux can be found employing the local form of the
energy conservation law. Provided the Hamiltonian is
represented as

H �
Z
E�r�d3r;

E�r� �
�h2

2m
r�̂��r�̂� � �̂���V ����̂� �

U
2
�̂���̂���̂��̂�;

(27)

then

@E
@t

� �divQ: (28)

Using Eqs. (27) and (1), we find

Q � �
�h2

m
Re

�
@�̂��

@t
@�̂�
@x

�
: (29)

Assuming as before that the condensate is at rest, we
consider the energy transfer by excitations. Treating
them as oscillations of the classic field of a condensate,
we have the following from (29) for the flux averaged
over time:

hQi � n0
�3=2

m1=2
h �QQi; h �QQi � �Re
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�
: (30)

Here n0 is the total particle density, �QQ is the expression
for the energy flux defined in terms of dimensionless
units (3). Let us consider again the incident flux of ex-
citations with energy ". Inserting the function �0 from
(10) and using (11), we obtain

h �QQi �
"
2
Im

�
S�
dS
dx

�G� dG
dx

�
: (31)

Outside the barrier, we use the general solution for S in
the form (16) and (17). Taking into account that the
function S3 is real and S2�k; x� � S�1�k; x� � S1��k; x�,
we find for the region x <�a,

Im

�
S�
dS
dx

�
� jAj2�1� R�

k
2
�1� tanh2�x� x0��;

where R is the reflection coefficient (26). According to
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(13), the contribution from the function G to (31) equals

Im

�
G� dG
dx

�
� jAj2�1� R�

k
2
�1� tanh2�x� x0��:

The sum of both expressions is independent of x, demon-
strating the conservation of the energy flux of excitations.

Let us find the relation between jAj2 and the physical
parameters. Comparing the density of the noncondensate
particles n0 � �1=2�n0jAj

2 in the incident phonon flux
with the known Bogoliubov result (see, e.g., [4]) for the
relation between n0 and phonon density n�k� concentrated
in the k-mode n0 � ��= �hc0k�n�k�, we find

jAj2 
 2��= �hc0k��n�k�=n0�: (32)

Here c0 �
�����������
�=m

p
is the speed of sound defined for the

density at jxj � a.
Returning to the dimensional units, we find for the

energy flux (30)

hQi � n�k�c0"�1� R�: (33)

In order to obtain the flux under the potential barrier in
the explicit form, we neglect again the distribution of the
condensate density in this region. Taking into account the
solution (20) and the conditions M 
 K and N 
 L, we
find from (31) h �QQi � 4"�0 Im�KL��. The coefficients K
and L are determined in (23) with jAj2 according to (32).
As a result, the energy flux (30) acquires the value

hQi � n�k�c0"T; (34)

where T is the transmission coefficient (24). At x � a, the
flux has the same value (34). Expressions (33) and (34)
demonstrate the constancy of the energy flux in the
system [see Eq. (26)]. Note that this is not the case for
the particle flux. One can show that this flux, which is
inevitably connected with the transfer of phonon excita-
tions, is not conserved and depends on x.

Let us note that the obtained results are not just an
outcome of the rectangular barrier. Actually, all results
hold good for a smooth potential barrier of arbitrary
form, in particular, for that created by resonance laser
light.
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