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Commensurate-Incommensurate Transition of Cold Atoms in an Optical Lattice
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An atomic gas subject to a commensurate periodic potential generated by an optical lattice undergoes
a superfluid-Mott insulator transition. Confining a strongly interacting gas to one dimension generates
an instability where an arbitrary weak potential is sufficient to pin the atoms into the Mott state; here,
we derive the corresponding phase diagram. The commensurate pinned state may be detected via its
finite excitation gap and the Bragg peaks in the static structure factor.
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We start with interacting bosons subject to a strong
transverse confining potential with frequency !? �

insulating Mott states at small J=U embedded in a
superfluid phase. The Mott states are characterized by
Ultracold atomic gases are developing into a perfectly
tunable laboratory system allowing one to study complex
quantum phenomena [1]. Recently, subjecting an atomic
Bose-Einstein condensate to an optical lattice, Greiner
et al. [2] have succeeded in tuning the system through a
quantum phase transition separating a superfluid (S) from
a Mott insulating (MI) phase. The superfluid is phase
coherent and exhibits a soundlike excitation spectrum;
there are strong fluctuations in the occupation number of
any particular lattice site [3]. In turn, the Mott insulator is
commensurate with the optical lattice, incompressible,
and has a gapped spectrum. The transition involves
weakly interacting bosons and is well understood within
the Bose-Hubbard description [4,5]: the system turns
insulating when the on-site interaction energy U becomes
of the order of the hopping energy J. This strong coupling
transition is a result of quenching the kinetic energy by a
deep lattice potential. Remarkably, by confining the
atomic gas to one dimension (1D), the strong coupling
limit can be reached without the optical lattice: in 1D, the
ratio � between the interaction and kinetic energies per
particle scales inversely with the density n and thus it is
the low-density limit which is interacting strongly (Tonks
gas) [6]. A new instability then appears in the strongly
interacting 1D quantum gas at �� 1: the superfluid
ground state of the homogeneous system turns insulating
in the presence of an arbitrarily weak commensurate
optical lattice, i.e., a lattice accommodating an integer
number of atoms per site. The transition to the super-
fluid state then is exclusively triggered by changing the
boson density away from the commensurate density;
hence the S-MI transition turns into a transition of the
incommensurate-commensurate type. In this Letter, we
analyze this new instability and derive the phase diagram
for the S-MI transition in the limits of both weakly and
strongly interacting gases. Remarkably, this goal can be
achieved by a mapping to two classic problems, the Bose-
Hubbard model introduced by Jaksch et al. [5] and the
sine-Gordon problem describing the weakly and the
strongly interacting limits of the atomic gas, respectively.
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�= �h (� the chemical potential); the effective
Hamiltonian becomes 1D and takes the form

H �
Z 1

�1
dx ��x�

�
�

�h2

2m
�� V�x�

�
 �x�

�
g
2

Z 1

�1
dx ��x� ��x� �x� �x� (1)

with  �x� the bosonic field operator. The potential V�x� �
V sin2�kx� accounts for the optical lattice with wave vec-
tor k � 2�=� and may also include a harmonic confining
potential. The constant g denotes the strength of the
�-function interaction potential; g is related to the 3D
scattering length as and the transverse confining fre-
quency !? via g � 2 �h!?as [7]. It is convenient to in-
troduce the dimensionless interaction strength � �
mg= �h2n defined as the ratio between interaction and
kinetic energies; n denotes the density and m the mass
of the bosons. Obviously, in 1D the strongly interacting
limit can now be reached by decreasing the density n, and
for �� 1 the system behaves as a gas of impenetrable
bosons.

We first focus on the weakly interacting atomic gas
(�	 1) in a strong optical lattice V � Er (Er �
�h2k2=2m is the recoil energy). With all the atoms in the
lowest vibrational state at each potential well, the bosonic
field operator  �x� �

P
i w�x� xi�bi can be expressed in

terms of the Wannier functions w�x� at site i, and the
Hamiltonian (1) reduces to the Bose-Hubbard model [5]

HBH � �J
X
hi;ji

b�i bj �U=2
X
i

b�i b
�
i bibi: (2)

In this tight-binding approximation, the hopping
amplitude J�V� derives from the exactly known
width 4J � �16=

����
�

p
�Er�V=Er�3=4 exp
�2�V=Er�1=2� of

the lowest band in the 1D Mathieu equation, while
the on-site interaction energy U�V; �� becomes U ��������
2�

p
�g=���V=Er�

1=4 [5].
The zero temperature �-�J=U� phase diagram of the

Bose-Hubbard model is well known [4] and involves
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commensurate densities n � 2i=� with i particles per
lattice site and the presence of an excitation gap. In 1D,
the transition to the lowest Mott lobe with i � 1 appears
at the critical value U=JjS-MI � 2C � 3:85 [8], where
strong fluctuations have been properly accounted for.
Using the above expressions forU and J, this result trans-
lates into the �-V phase diagram describing the atomic
gas at the commensurate density n � 2=�; the critical
potential strength Vc��� is obtained from the implicit
equation

4V=Er � ln2
4
���
2

p
�C�V=Er�1=2=�� (3)

and is shown in Fig. 1. Consistency requires the restric-
tion to weak coupling �	 1 and large critical potential
strength Vc � Er.

Next, we turn to the limit of a weak optical lattice V 	
Er. Then the above description of the atomic gas in terms
of the Bose-Hubbard model breaks down, since the atoms
now occupy several vibrational states in each well. In
the limit where the optical lattice is only a small per-
turbation, the natural choice is to start from a hydro-
dynamic description of the homogeneous system (1). In
this hydrodynamic approach, one expresses the bosonic
field operator  �x� �

�����������������������
n� @x!=�

p
exp�i"� in terms of the

long-wavelength density and phase fields ! and" obeying
the standard commutation relation 
@x!�x�; "�y�� �
i���x� y�. In the absence of the optical lattice, the
Hamiltonian (1) reduces to the low-energy quadratic
form [9]

H0 �
�h

2�

Z 1

�1
dx
vJ�@x"�2 � vN�@x!�2�: (4)

Here, the first term accounts for the kinetic energy of the
bosons with vJ � � �hn=m, while the second term derives
from the interaction energy with vN � @n�=� �h deter-
mined by the inverse compressibility. The sound velocity
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FIG. 1. Left: Schematic phase diagram illustrating the super-
fluid and Mott insulating phases versus parameters � (inter-
action), V (optical potential), and Q (commensuration). Right:
Critical amplitude Vc versus interaction 1=� for the commen-
surate situation with Q � 0. Below 1=�c, an arbitrary weak
potential V drives the superfluid into the pinned insulating
state. The dashed line denotes the asymptotic behavior near the
critical point 1=�c as determined from the sine-Gordon model,
while the dash-dotted line derives from the Bose-Hubbard
criterion U=JjS-MI � 3:84; the solid line interpolates between
these two limits.
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vs �
������������
vJvN

p
is consistent with the standard thermody-

namic relation mv2s � n@n�. The Hamiltonian (4) with
its linear spectrum ! � vsk is valid only below a mo-
mentum cutoff 1=a� �n [10]; the choice of the length
scale a fixes the energy scale of H0. The dimension-
less parameter K �

��������������
vJ=vN

p
determines the quasi-long-

range order of the bosonic field operator h ��x� �x0�i �
jx� x0j�1=2K for jx� x0j ! 1; the Hamiltonian (4)
describes bosonic particles with a superfluid ground state
at zero temperature. The effect of interactions arising
from scales smaller then a is properly accounted for by
a renormalization of the inverse compressibility @n����
[9]; the stiffness vJ remains unrenormalized. The re-
normalization derives from the exact solution of the
Hamiltonian (1) in the absence of a periodic potential
by Lieb and Liniger [10]. Then the dimensionless pa-
rameter K is a monotonically decreasing function of �;
the limiting behavior for small values of �

K��! 0� � �
�� �1=2���3=2��1=2 (5)

follows from the Bogoliubov approximation in 1D.
Surprisingly, this result remains quantitatively correct
for � values up to 10 [10]. At large � > 10, the asymptotic
behavior is K��! 1� � �1� 2=��2.

Adding now an optical lattice, it is necessary to go
beyond the hydrodynamic approximation. The particle
density operator has to be modified in order to account
for the discrete nature of the bosons [9]

n�x� �
�
n�

1

�
@x!

	�
1� 2

X1
l�1

cos�l!� l�nx�
	
: (6)

The periodic potential V�x� in Eq. (1) gives rise to the
perturbation

HV �
V
2

Z 1

�1
dxn�x� cos

4�x
�

: (7)

Insertion of the Fourier expansion (6) in (7) gener-
ates terms of the type appearing in the quantum
(1� 1)-dimensional sine-Gordon theory [11,12]. In the
following, we consider particle densities n � 2=� close
to commensurability, i.e., about one boson per unit cell of
the periodic lattice, and define the parameter Q �
2��n� 2=�� as a measure of the deviation from com-
mensurability. Then, the dominant term in Eq. (7) arising
from the lowest harmonic in (6) has the conventional
sine-Gordon form [4]

HV �
V n
2

Z 1

�1
dx cos
2!�Qx�: (8)

The strength of the nonlinear cos2! perturbation is con-
veniently expressed through the dimensionless parameter
u � �a2nV=2 �hvs which naturally involves the cutoff
parameter a [13]. The twist Q vanishes at commensur-
ability; away from commensurability, the finite twist Q
is preferably incorporated into the free Hamiltonian
(4) via the replacement @x!! @x!�Q=2 and acts as
130401-2
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a shift �� � �hvsQ=�2K� in the chemical potential for
excitations.

The Hamiltonian H0 �HV takes the form of the
�1� 1�-dimensional quantum sine-Gordon model, and
is the proper low-energy description of the Hamiltonian
(1) for a weak optical lattice u	 1. The quantum sine-
Gordon model has been discussed in the context of the
commensurate-incommensurate transition of adsorbates
on a periodic substrate [14]; it defines an exactly solvable
quantum field theory and has been extensively studied in
the past [11–13,15]. In the following, we make use of the
results pertinent to the description of the phase diagram.
We first consider the evolution of the system with chang-
ing interaction � at commensurate density Q � 0 and
keeping the potential V fixed; see Fig. 1.

A perturbative calculation (see Ref. [12] for a review)
shows that the weak optical lattice described by HV is
irrelevant for K > Kc � 2 and hence is unable to pin the
bosons. The ground-state properties then are determined
by H0 alone and the bosons remain superfluid with a
linear excitation spectrum. Using the relation K���, the
critical value Kc � 2 translates to �c � 3:5 in the �-V
phase diagram. In the strong coupling regimeK <Kc, the
perturbation HV is relevant, and the atoms are locked to
the lattice even for an arbitrary weak potential strength
V. In this Mott insulating state, the excitation spectrum
takes the form Eq �

����������������������������
� �hvsq�

2 � �2
p

and exhibits the ex-
citation gap �.

The dependence of the gap � on u can be obtained
from a recent nonperturbative renormalization group
analysis of the quantum sine-Gordon model by Kehrein
[13]; for small values u andK away fromKc � 2 one finds
� � � �hvs=2a�
u=�2� K��1=�2�K�; for K ! 1 this takes
the simple form � ! �hvsu=2a. With K approaching
Kc � 2 the gap vanishes exponentially; see [13] and
Fig. 2(a). Exploiting the equivalence between strongly
interacting bosons and free fermions in 1D [16] the open-
ing of such a gap is easily understood in the Tonks gas
limit K � 1. The ground-state wave function of the bo-
sons coincides with that of free fermions [16]; at com-
mensurate filling with one particle per unit cell, the
∆N
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FIG. 2. (a) Size of the gap �� � 2K� versus interaction
strength � for a fixed amplitude V � Er=2. For �! 1 the
gap assumes the free fermion limit V=2, while it vanishes
exponentially for �! �c. (b) Fraction of atoms in the Mott
insulating phase. The inset shows the density distribution n�x�
with the Mott phase characterized by a locked commensurate
density in the trap center, surrounded by a superfluid region.

130401-3
fermions form a band insulator with a single-particle
band gap 2� � V=2 at the Fermi energy. Comparing
this result with the above expression 2��K � 1� �
�hvsu=a fixes the cutoff at the value 1=a � �n at K � 1
and we obtain u � KV=4Er. In the following, we ignore
small corrections arising due to a possible modification in
the cutoff away from K � 1 and arrive at the final form
for the gap

� �
Er
K

�
KV

�2� K�4Er

	
1=�2�K�

: (9)

As a result of the strong interaction between the bosons
the excitations obey Fermi statistics.

Increasing the periodic potential strength V, the tran-
sition line separating the superfluid from the Mott insu-
lator may be obtained from the Kosterlitz-Thouless
nature of the scaling flow near Kc � 2: to lowest order
in u, Kc�u� � 2�1� u�. Combining this result with (5)
it is straightforward to determine the line Vc��� �
Er��

�1 � ��1
c �=5:5 in the �-V phase diagram; see Fig. 1.

Next, we turn away from commensurability and
concentrate on the stability of the Mott insulator at fixed
V and � > �c�V�, but finite twist Q � 0. Then, for
an arbitrary weak potential V, the transition is of the
commensurate-incommensurate type as studied by
Pokrovsky and Talapov [14]. The quantum sine-Gordon
model describes the competition between the preferred
average interparticle distance 1=n at given density due to
the repulsive interaction and the period �=2 imposed by
the external potential. The atoms remain locked to the
weak periodic potential as long as the shift �� in the
chemical potential induced by the twist Q remains
smaller than the single-particle energy K� necessary
for the addition of a boson; note that the above soli-
tonic excitations involve 1=K bosons [15] and there-
fore the required energy for an additional boson is K�.
This condition then translates into the critical twist
Qc��; V� � 2K2�= �hvs; beyond Qc the system develops
a finite density of excitations, which interpolate between
minima of the external potential, thus relieving the frus-
tration present at incommensurate densities Q � 0.

In order to analyze the consequences of the commen-
surate-incommensurate transition for cold atoms in a
trap, we consider a 1D Bose gas in the presence of a
weak longitudinal confining potential V�x� � m!2x2=2.
Provided the associated oscillator length l � � �h=m!�1=2

is much larger than the interparticle distance, the density
profile in this inhomogeneous situation may be obtained
from the Thomas-Fermi approximation [17]

�
n�x�� � V�x� � �
n�0��; (10)

where �
n� is the chemical potential of the homogeneous
system. The central density n�0� and the associated radius
R � �2�
n�0��=m!2�1=2 of the cloud are obtained from
the normalization condition
130401-3
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N �
Z R

�R
dxn�x� � 2R

Z n�0�

0
dn

�������������������������
1�

�
n�
�
n�0��

s
(11)

with N the particle number, provided the relation �
n� is
known explicitly. In the absence of an optical lattice
the density profile is a smooth function of the coupling
�. In the limit �� 1, �
n� ! �F
n� � � �h�n�2=2m ap-
proaches the expression for the Fermi energy of an ideal
Fermi gas with density n [17], resulting in a profile
n�x� � �2N=�R�

�����������������������
1� �x=R�2

p
with radius R � �2N�1=2l.

Adding an optical lattice, the chemical potential �
n�
as a function of density n jumps by �� � 2K� at the
commensurate density n � 2=�

�
n� � �F
n� �
��
2
f
�
4KEr
��

�n
nc

�
(12)

with �n � n� nc (nc � 2=�) and

f�z� � ��1� z2�1=2 � z: (13)

The expression (13) for f�z� has been derived exploiting
again the equivalence between strongly interacting bo-
sons and free fermions valid at K � 1 [16]. Ignoring the
residual interaction between the solitons appearing for
K > 1, the expression (13) remains a valid approximation
in the relevant regime 1<K < 2 [13]. As a consequence,
an incompressible region with a flat density profile ap-
pears in the center as the trap is filled up to the commen-
surate density n � 2=�. Using the approximation (13),
the density profile and the fraction �N=N of particles in
the commensurate phase are obtained from an integration
of (11) with (12); see Fig. 2(b).

Knowledge of the locked fraction �N=N plays an
important role in the experimental detection of a com-
mensurate Mott phase. This can be achieved by measur-
ing the excitation gap through a phase gradient method as
done previously for the Bose-Hubbard transition [2]. A
more interesting alternative, however, would be to di-
rectly observe the increase in the long-range translational
order in the Mott phase via Bragg diffraction [18,19]; in
either case the fraction �N=N determines the experimen-
tally available signal. The latter can be further enhanced
by generating an array of parallel ‘‘atom wires’’ with the
help of a strong 2D optical transverse lattice. Using num-
bers similar to those in the recent experiment by Greiner
et al. [2], it is possible to generate several thousand
parallel 1D wires with a transverse confining frequency
0? � 20 kHz. A longitudinal harmonic trap with fre-
quency 0 � 40 Hz then encloses N � 50 atoms in each
1D wire; the associated central density in the absence of a
longitudinal periodic potential is n�0� � 2 �m�1 for
�� 1, commensurate with the lattice constant �=2 �
0:5 �m of a typical optical lattice [2]. A weak periodic
potential will then lead to an incompressible Mott state in
the center of the cloud, provided the parameter � �
2as=n�0�l

2
? is larger than the critical value �c � 3:5.

For 87Rb with a scattering length as � 5 nm, the resulting
130401-4
� is equal to 1, i.e., not quite in the required range. As
noted already by Petrov et al. [6], however, tunable and,
in particular, larger values of � may be realized either
by changing as via a Feshbach resonance as present, e.g.,
in 85Rb, or simply by increasing the transverse confine-
ment frequency.

In conclusion we have shown that a commensurate
Mott state can be realized in dilute 1D Bose-Einstein
condensates already with an arbitrary weak lattice po-
tential, provided that the ratio � between the interac-
tion and kinetic energies is larger than a critical value
�c � 3:5. This instability provides a new and experimen-
tally accessible tool for the quantitative characterization
of 1D atomic gases in the strongly correlated ‘‘Tonks gas’’
limit. Also, the observation of a Mott state in a regime
where the atoms are not confined to discrete lattice sites
would give direct evidence for the granularity of matter
in strongly interacting dilute gases [3].

It is a pleasure to acknowledge fruitful discussions with
I. Bloch, T. Esslinger, M. Greiner, and S. Kehrein. This
work was supported by the DFG Schwerpunkt Ultrakalte
Quantengase.
*Present and permanent address: Sektion Physik,
Universität München, Theresienstrasse 37, D-80333
München, Germany.

[1] J. R. Anglin and W. Ketterle, Nature (London) 416, 211
(2002).

[2] M. Greiner et al., Nature (London) 415, 39 (2002).
[3] M. Greiner et al., Nature (London) 419, 51 (2002).
[4] M. P. A. Fisher et al., Phys. Rev. B 40, 546 (1989).
[5] D. Jaksch et al., Phys. Rev. Lett. 81, 3108 (1998).
[6] D. S. Petrov, G.V. Shlyapnikov, and J. T. M. Walraven,

Phys. Rev. Lett. 85, 3745 (2000).
[7] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[8] T. D. Kühner and H. Monien, Phys. Rev. B 58, R14 741

(1998); S. Rapsch, U. Schollwöck, and W. Zwerger,
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