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Pattern of Reaction Diffusion Fronts in Laminar Flows
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Autocatalytic reaction between reacted and unreacted species may propagate as solitary waves,
namely, at a constant front velocity and with a stationary concentration profile, resulting from a balance
between molecular diffusion and chemical reaction. The effect of advective flow on the autocatalytic
reaction between iodate and arsenous acid in cylindrical tubes and Hele-Shaw cells is analyzed
experimentally and numerically using lattice Bhatnagar-Gross-Krook simulations. We do observe the
existence of solitary waves with concentration profiles exhibiting a cusp and we delineate the eikonal
and mixing regimes recently predicted.
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solitary wave solution with front velocity V0 �����������������
�Dm=2

p
and front width L0 � Dm=V0 [5,6]. The use of

effects [Dm� in Eq. (2)] smooth the cusp, but do not
otherwise alter these predictions. Note also that similar
The motion of interfaces and the propagation of fronts
resulting from chemical reactions occur in a number of
different areas [1], including population dynamics [2,3]
and flame propagation [4]. It is known that autocatalytic
reaction fronts between two reacting species propagate
as solitary waves, namely, at a constant front velocity
and with a stationary concentration profile [5,6]. The
important issue of the selection of the front velocity
was addressed earlier on, but only a few cases are well
understood, such as the pioneering works of Fisher [2] and
Kolmogorov-Petrovskii-Piskunov (FKPP) [3] on a reac-
tion diffusion equation with second-order kinetics [1,4,7].
The effect of advective flow (inviscid and/or turbulent) on
reacting systems was analyzed extensively in the propa-
gation of flames in the context of combustion [4,8]. On the
other hand, advective effects on the behavior of autoca-
talytic fronts have been only recently addressed [9–11].
Edwards [11] studied theoretically the effect of a 2D
laminar flow on an autocatalytic reaction front between
two infinite planes separated by a gap b. In this geometry,
the velocity profile is unidirectional in the direction z of
the flow and is given by Poiseuille’s equation, ~UU �
UM�1� �2�~zz where UM � 1:5U is the maximum veloc-
ity, U is the mean velocity, � � 2x=b is the transverse
normalized coordinate, and ~zz is the unit vector parallel to
the flow, chosen as the direction of the front propagation
in the absence of flow (see below). Consider the iodate-
arsenous acid reaction described by a third-order auto-
catalytic reaction kinetics [1,5,6]:

@C
@t

� ~UU � ~rrC � Dm 4 C� �C2�1� C�; (1)

where C is the concentration of the (autocatalytic) reac-
tant iodide, normalized by the initial concentration of
iodate,Dm is the molecular diffusion coefficient, and � is
the reaction rate kinetic coefficient. In the absence of
hydrodynamics ( ~UU � ~00), Eq. (1) admits a well-known
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these two quantities to normalize velocities and lengths in
Eq. (1) leads to two independent parameters � � b=2L0

and " � U=V0. Reference [11] investigated numerically
the solitary wave solution of Eq. (1), and particularly its
normalized front velocity, v � VF=V0, as a function of ",
for different values of �. Of interest are the following
asymptotic predictions.

In the narrow-gap regime (� ! 0 or " ! 0), it was
found that v � 1 � ". Namely, when L0 
 b, mixing
across the gap is significant, the concentration front is flat,
and advected by the mean flow, yielding VF � V0 � U.

On the other hand, in the wide-gap regime (�
 1), the
front is thin and curved across the gap, and Eq. (1) can be
replaced by the eikonal equation:

~VVF � ~nn � V0 � ~UU � ~nn �Dm�; (2)

where ~nn is the unit vector normal to the thin front (ori-
ented from reacted to unreacted species) and � the front
curvature. In this regime, to leading order and neglecting
the local front curvature, the front velocity is given by the
simplified 1D eikonal equation:

VF � V0= cos��U���; (3)

where � is the angle between ~nn and the flow direction
and U��� is the advection velocity. Under these condi-
tions, Ref. [11] predicted two behaviors depending on
the flow direction: For a supporting flow (" > 0), VF �
V0 �UM, which means that the front is advected at the
largest possible velocity. The front shape across the gap is
then given by the solution of Eq. (3). For an adverse flow
(" < 0), VF � V0, which also represents the maximum
algebraic velocity one could have expected physically.
The front is perpendicular to the walls (� � 0 at � �
�1), and presents a cusp in the middle of the gap (dis-
continuity of � at � � 0). Here, the adverse flow elongates
the front but does not slow it down. Note that curvature
 2003 The American Physical Society 128302-1



FIG. 1. Normalized front velocity v versus normalized flow
velocity " ("< 0: adverse flow, " > 0: supportive flow) for dif-
ferent normalized sizes �. Top: Hele-Shaw cells of different
normalized thicknesses and aspect ratios ��� b=2L0;W=b�: �
(0.5, 10); � (1, 20); � (2, 20); � (5, 15). Bottom: Circular tubes
of different normalized radii (�� a=L0�: � (3); � (5.8); �
(8.8). The full and the dashed lines correspond, respectively, to
the mixing regime (�! 0) and to the eikonal regime (�!1).
Experimental pictures: From left to right "��4:8, �2:4,
�2:4, and �4:8 for Hele-Shaw cells (with �� 1) and
"��6:7, �1:9, �1:9, and �6:7 for tubes (with �� 3).
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features would occur for other kinetics such as FKPP or
Arrhenius ones [9].

The objective of the present Letter is to experimentally
test the above 2D predictions using two different devices,
namely, Hele-Shaw cells and cylindrical tubes. The case
of the Hele-Shaw cell, consisting of two parallel plates
separated by a gap b small compared to the other dimen-
sions, is supposed to be quantitatively addressed by [11].
Alternatively, the case of the cylindrical tube of inner
radius a (in which the flow field is also described by
Poiseuille’s equation, with UM � 2U and � � r=a) rep-
resents a genuine (axisymmetric) 2D situation. Experi-
ments in Hele-Shaw cells are discussed with the help of
lattice Bhatnagar-Gross-Krook (BGK) simulations [12]
of Eq. (1) for a 3D flow.

In the experiment, the front is detected by using starch,
at small concentrations, which reacts in the presence of
iodine leading to a dark blue signature of the front pas-
sage [6,12]. First, we consider the reaction in the absence
of advection by the flow ( ~UU � ~00). As expected, we do
observe solitary fronts propagating with flat shapes. In
accordance with [5,6], their velocity is V0 � 0:02 mm=s,
from which one can estimate their front thickness L0 �
Dm=V0 � 0:1 mm (Dm � 2:10�9 m2=s). Because the re-
action products have a lower density than the unreacted
species, the hydrodynamically stable situation corre-
sponds to descending fronts in vertical tubes. In the
following, we focus on the interplay between advection
and propagating fronts. To minimize the effect of density
contrast, we studied the propagation of buoyantly stable
fronts in small cells. We used vertical Hele-Shaw cells of
size b
W � 0:1
 1, 0:2
 4, 0:4
 8, 1
 15 mm2 and
circular capillary tubes of radius a � 0:3, 0.58, 0.88, and
1.9 mm. A constant advecting flow, upwards or down-
wards, was fixed by a syringe. Note that these cells are
small enough to prevent flattening of the front due to
buoyancy, but large enough to enable a constant flow
rate injection with our injection device. The average ve-
locity of the imposed flow ranged between 0 and �60V0.

In a 3D Hele-Shaw cell, the flow velocity profile is
unidirectional and depends on the two transverse coordi-
nates, x and y [13]. The profile across the gap is almost
parabolic with a gap-average value uniform over the
width W, except in a boundary layer of order b, within
which the velocity vanishes (see the gap-average profile
in Fig. 4). For the three aspect ratios studied, W=b � 10,
15, and 20, we can estimate from [13], UM=U � 1:60,
1.57, and 1.55, respectively. We observed solitary waves
in the whole range of flow rates investigated. Typical
fronts are shown in Fig. 1 in the plane of Hele-Shaw cells
(top diagram) and in tubes (bottom diagram). For each
geometry, two adverse flows (on the left) and two suppor-
tive flows (on the right) are displayed. The front shape
always points toward the same direction as the under-
lying flow field, while its distortion increases with flow
intensity (recall that the fronts are flat in the absence of
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flow, U � 0). The triangular shapes observed, in the case
of adverse flows, are reminiscent of premixed flames [14].
The two graphs in Fig. 1 show the normalized front ve-
locities v � VF=V0 versus " � U=V0, measured for dif-
ferent sizes of the Hele-Shaw cells and tubes. For each
data set (given �), the front velocity increases linearly
with the flow rate, but with a slope different for suppor-
tive and adverse flows. This change of slope is in accor-
dance with [11] as well as the observed evolution of the
slopes with �. In addition, most of the data fall in the
domain delimited by the asymptotic regimes described
above. The exceptions correspond to supportive flows in
the smaller tubes (1<�< 6), which, unlike Edward’s
2D numerical data, fall below the mixing regime (pre-
dicted for �� 1). This difference needs to be further
analyzed, given that it is difficult to achieve experimen-
tally a very low constant flow rate injection in the small
128302-2
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tubes. At the same time, some authors [10] have suggested
that the mixing straight line should be higher. Using the
Peclet number (Pe � Ua=Dm � "�), which compares
the relative importance of advection and diffusion, and
the Damköhler number (Da � �a=U � 2�="), which
is the ratio of advective to reactive time scales, they
predicted [10] that for Da� 1 (which is not attainable
in our experiments), the front velocity should be the
product of V0 by the Taylor dispersion factor [15], which
accounts for the coupling between advection and trans-
verse diffusive mixing. This factor would then enhance
the front velocities.

The front velocities measured in the Hele-Shaw cells
are very close to the mixing regime. However, in the case
of adverse flows, the measured values exhibit some de-
parture toward the eikonal regime (VF � V0) when either
� or " is increased. This trend is even more pronounced
for the tubes, which present larger � values than for the
Hele-Shaw cells, in accordance with predictions [11]. On
the other hand, all the values measured for supportive
flows, even large (" up to 50 for � � 0:5 displayed in
Fig. 2) fall on the asymptotic mixing regime predicted
by the strictly 2D gap analysis [11] (VF � V0 � �UU for
�! 0). This is all the more surprising since the flatness
of the fronts, expected in the mixing regime, was not
observed in the Hele-Shaw cell plane (top right of Fig. 1).
However, in our experiments, although the normalized
gap � � b=2L0 introduced in the 2D gap analysis [11] is
small (0.5, 1, 2, 5), the normalized width W=2L0 is large
(5, 20, 40, 75). Extrapolating Edwards’s 2D gap analysis
to our 3D case would suggest that our experiments com-
bine a mixing regime across the gap with an eikonal
regime across the width. Under these assumptions, the
shape and velocity of the front would obey an equation
similar to Eq. (2), namely,
FIG. 2. Normalized front velocity v versus normalized flow
velocity " for the smaller Hele-Shaw cell of size 1
 0:1 mm2

(� � 0:5, W=b � 10). The full and the dashed lines corre-
spond, respectively, to the mixing (�! 0) and to the eikonal
(�! 1) regimes.
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VF � �V0 �Dm��= cos��U2D�y�; (4)

where the effective advection velocity U2D�y� is the gap-
averaged velocity defined in [13], and where � represents
now the curvature of the 2D front curve observed in
the plane of the Hele-Shaw cell. The front velocity for
" > 0 would then be set by the maximum U2D

M of
the profile U2D�y�, found in the middle of the plane [for
��y � 0� � 0 and ��y � 0� � 0]. The so-obtained maxi-
mum front velocity, VF � V0 �U2D

M , expected in the
asymptotic width-eikonal regime (W=2L0 
 1) can be
compared to the velocity, VF � V0 � �UU, expected in the
width-mixing regime (W=2L0 � 1). One finds that these
two asymptotic velocities would be equal in the Hele-
Shaw limit (W=b! 1) and are actually very similar
in our experiments (as U2D

M =U � 1:07, 1.05, and 1.03
for the three aspect ratios used). This could justify that
the parameter � � b=2L0 introduced in the 2D gap
analysis [11] actually controls the front velocity in 3D
Hele-Shaw cells.

We tested the ability of the full description and the
simplified one, given, respectively, by Eqs. (1) and (4),
to account for both shape and velocity of the experimen-
tal fronts. As lattice BGK simulations have been used
to obtain the solutions of Eq. (1), we have first validated
this numerical method, by reproducing Edwards’s re-
sults [11] on the shape and velocity of the fronts propagat-
ing between two infinite planes (2D simulations) [16].
Then, 3D lattice BGK simulations of Eq. (1) and numeri-
cal integration of the 2D eikonal Eq. (4) were performed,
using, respectively, the analytical stationary 3D flow field
given by [13], and its gap average U2D�y�. The front
obtained with the latter method was compared to the
isoconcentration C � 0:5 of the gap-averaged concentra-
tion map produced by the lattice BGK simulations.
Figure 3 displays these fronts, for the same parameters
(", �, W=L0) as in one typical experiment, in the cases of
adverse (" � �4:8) and supportive (" � �4:8) flows.
Note that in these cases of interest, for which W=L0 is
finite, the integration of Eq. (4) requires the value of the
front velocity (thus fixing the value of the curvature � at
the integration starting point). Hence, Eq. (4) is not fully
predictive, but links the shape of the front to its velocity.
The shape and velocity predicted by lattice BGK simu-
lations and the ones given by Eq. (4) are found to compare
fairly well with the experimental observations in the
case of adverse flow. However, for the supportive flow
case, although the front velocity is correctly predicted,
the two numerical predictions, similar for the shape, fail
to account for the experimental observations. We believe
that this discrepancy might be due to an alteration of
the flow velocity profile caused by a triangular menis-
cus which appears on the top of the solution in our
supportive flow experiments. From its shape and its dis-
tance to the front (typically several tens of W), one can
128302-3



FIG. 4. Time evolution of the front from a flat shape to a
triangular one in the plane of a Hele-Shaw cell. The fronts
obtained with 3D lattice BGK simulations (lines) are com-
pared to the experimental stationary front (left of the figure)
for � � 1 and " � �3:3. The figure on the right displays the
gap-averaged flow velocity profile of the simulation.

FIG. 3. Calculated concentration fronts in the plane of the
cell, obtained with 3D lattice BGK simulations (full lines) and
with integration of the 2D eikonal Eq. (4) (dashed lines), for
� � 1 and for one adverse flow (top: " � �4:8) and one
supportive flow (bottom: " � 4:8). The front velocities so-
obtained are Vf=V0 � �3:3 and 6:16, respectively. The dot-
dashed line is the front obtained by the 2D eikonal, when the
flow velocity is slightly modified (2%) to mimic the effect of
the meniscus which appears on the top of the reacted mixture.
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infer that the meniscus could introduce a few percents of
excess fluid velocity in the middle of the cell plane. The
resulting nonuniformity in U2D�y� may account for the
rounded shape observed in the supportive flow experi-
ments (see Fig. 3).

We have also analyzed the dynamics of the shape
formation in the case of adverse flows. Figure 4 displays
the time development of the isoconcentration C � 0:5,
initially flat, toward the stationary triangular shape. The
sequence shows that an early determination of both the
final front velocity and the final angle � is achieved as
soon as the profile is altered over a typical distance b from
the side walls. This supports the contention that W plays
no role in the determination of both shape (�) and veloc-
ity in the regimes under consideration. This was con-
firmed by simulations in wider lattices which produced
the same values of the velocity and �. Thus � � b=2L0 is
effectively the relevant parameter in Hele-Shaw cells (for
which W=b
 1).

In conclusion, we have performed experiments and
lattice BGK simulations of autocatalytic reaction fronts
in laminar advective flow fields in Hele-Shaw cells and
circular tubes. Solitary waves were observed in the entire
range of flow rates. For flows adverse to the chemical front
propagation, we observed cusplike fronts in tubes and
128302-4
triangular fronts in the plane of Hele-Shaw cells. Our
measurements of the front velocity agree with the 2D
asymptotic predictions [11], in the limiting cases where
either diffusion overcomes reaction (�� 1) or it is neg-
ligible (�
 1). It would be interesting to extend the
range of the cell sizes. Larger cells could be used to study
the buoyancy stabilizing effect and smaller cells within
the scope of microfluidics.
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