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Using simulations and scaling methods, the effect of an electric field on a collapsed polyelectrolyte
globule is investigated, where conduction by counterions and the polyelectrolyte itself is taken into
account. At a critical field E*, a nonequilibrium transition occurs at which the polyelectrolyte unfolds
and aligns parallel to the external field. E* is determined using scaling results for the polarizability of a
polyelectrolyte globule and exhibits a dependence on the chain length N, E* ~ N~'/2, which might be
useful for electrophoretic separation of charged biopolymers.
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The behavior of polyelectrolytes (PE) exhibits a num-
ber of remarkable features which are due to the electro-
static coupling between polymeric and counterion degrees
of freedom. Relevant for the present paper is the sequence
of PE conformations which is observed in simulations as
the electrostatic coupling between the charges on the PE
and the counterions is increased [1-4]. Experimentally,
the coupling can be tuned by changing temperature,
dielectric constant of the solvent, counterion valency
and size, or charge density of the PE. For very small
coupling, the PE resembles a neutral polymer since the
electrostatic repulsion between monomers is very small.
As the coupling increases, the monomer-monomer repul-
sion leads to a more swollen configuration (the standard
PE effect). However, as the coupling further increases,
counterions condense on the PE, decrease the repulsion
between monomers, and the PE starts to shrink. Finally,
at very large electrostatic coupling, the PE is collapsed to
a close-packed, almost charge-neutral condensate which
contains most of its counterions. A similar sequence is
experimentally seen with synthetic PEs [5] and DNA [6—
9]. Of particular importance is the condensation of single
DNA molecules [6,9], since comparison with simulations
of single PEs is possible.

All these phenomena concern the static, equilibrium
behavior of PEs. In electrophoretic experiments, PEs are
subject to external electric fields and the resulting mobil-
ity is measured [10,11]. Such techniques are widely used
to separate DNA and charged proteins according to their
molecular weight. In these situations, the electric field
induces motion of ions and PEs, thus dissipation of en-
ergy, and one is facing a nonequilibrium problem. In this
paper, we study the effects of electric fields on PE con-
densates using dynamical simulations and scaling argu-
ments. In contrast to previous theories, where the
counterions are not taken into account explicitly [12,13]
or their coupling to the PE is rather weak [14,15], we start
from a strongly coupled (collapsed) PE-counterion sys-
tem and investigate the resultant effects for large electric
fields (i.e., far from equilibrium).

We first analyze the static (zero-field) case and develop
scaling arguments for the condensation of counterions
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and for the polarizability of a PE globule. Our simula-
tions show that linear-response theory describes the in-
duced dipole moment of a condensed PE globule in an
electric field quantitatively up to a critical field strength at
which the PE unfolds and orients in the direction of the
field. This nonequilibrium unfolding transition occurs at a
polarization energy equivalent to approximately thermal
energy, which, together with our estimate of the polar-
izability of a PE globule, shows that the critical field
strength scales as N~'/2 with the polymer length N.
Since the PE mobility is expected to change drastically
at the unfolding transition, this transition should be de-
tectable by mobility measurements and in turn could be
used for efficient separation of PEs of different length.

In our dynamic simulations, we consider a single PE
chain consisting of N charged beads of valency g and
radius a, in a cubic periodic box of length D together with
N oppositely charged counterions of the same valency
and radius. The box volume D3 corresponds to the inverse
PE concentration and plays an important role. We use the
position Langevin equation, from which the velocity of
the ith particle at time ¢ follows as

Fi(t) = —uoVy, U(1) + poges;E + &(1), )

where i is the bare particle mobility, U is the poten-
tial energy, E the external electric field, s; = £1 for
monomers/counterions, and §; is a vectorial random force
acting on particle i. At the present stage of our theory, we
neglect hydrodynamic interactions between particles
(as is justified since we are mostly interested in collapsed
PEs where hydrodynamic forces are overwhelmed by
electrostatic forces), and the random force is correlated
according to (§;(¢) - §;(t')) = 6kpTuod(t — ¢')5,;. In the
simulations, we discretize Eq. (1) with a time step A and
rescale all lengths by the monomer/counterion radius
a according to F; = r;/a. The iterative Langevin equation
in terms of the discrete time variable n = ¢/A now reads

Fi(n+ 1) =£(n) — 4oV, U(n) + fiosE + 6j10€(n),

where U = U/kgT is the dimensionless potential en-
ergy, E = geaE/kgT the rescaled electric field, and the
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rescaled random force has variance unity, <.§,.(m) X
£ j(n)) = 8,,,6,;. The only dynamic parameter remaining
is the rescaled moblllty Lo = AuoksT/a? which is the
diffusion constant in units of the particle radius a and
time step A. In our simulations, we chose ji, = 0.002
which is a good compromise between efficiency and ac-
curacy. The potential energy has several contributions,
U=0.+0,, + ULJ The Coulombic part is

_ 8;8;
‘—1
er -1

i<j

2

where 2 = ¢*{g/a is the coupling strength and measures
the ratio of the Coulomb interaction and the thermal
energy at a typical distance a [€z = e?/(4mekgT) is the
Bjerrum length, in water, €5 = 0.7 nm]. The connectivity
of the PE is ensured by the term

U,, = KZ(lfz -
(ij)

where the sum runs over nearest neighbors of the PE
chain only. The bond stiffness is K = 100 which gives a
very narrow distribution of bond lengths. Finally, col-
lapse of counterions and charged monomers is prevented
by a truncated Lennard-Jones term acting between all
particles in the simulation,
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used for separation |F; — I; ;| <2 only with an energy
parameter € = 1. Equlhbratlon takes roughly 10 time
steps, simulations were run for at least 107 time steps. In
Fig. 1, we show in the top panel a few snapshots of a PE
chain with N = 50 monomers in the absence of an ex-
ternal field, exhibiting the well-known initial expansion

H
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of the chain due to increasing monomer-monomer repul-
sion, followed by a progressive condensation of counter-
ions on the chain and concomitant collapse of the chain as
the coupling parameter E increases. This is reﬂected
by the rescaled polymer radius of gyration R

S A{(F; — Ry)?)/N (where Ry is the PE center of mass
and the sum runs over PE monomers only) in Fig. 1(a)
which shows for the various box sizes used a maximum at
E =~ 3. The number of condensed counterions in Fig. 1(b)
(a counterion is rather arbitrarily defined as condensed
when its center is closer than 4a to any monomer center)
depends weakly on the box size: The bigger the box the
smaller the number of condensed counterions. The sim-
plest approach towards counterion condensation on finite-
size cylinders [16] starts with the observation that the
electrostatic energy of a cylinder of length L, radius a,
and linear charge density g/2a is (neglecting end effects)
given per unit length and in units of kg7 by w =
EIn(L/a)/4a. Assuming that a fraction x of counterions
condenses on the cylinder, the modified electrostatic en-
ergy becomes w = (1 — x)>E In(L/a)/4a. Details of the
counterion distribution influence only the next-leading
order and are therefore irrelevant for the present argu-
ments. The entropy cost of confining a fraction x of
counterions into a cylindrical compartment of approxi-
mate volume =~ La” scales (per unit length) as s =
xIn(D?/La?)/a. Minimizing the total free energy w + s
with respect to x, the fraction of condensed ions, one
obtains the leading result for large L/a and D/L:
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For infinitely long cylinders L/a = oo, the exact Manning
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FIG. L.

Simulation snapshots of a PE with N = 50 monomers and approximate length L =~ 100 in a cubic box of diameter D =

200 for various values of the coupling parameter =. (a) Radius of gyration, (b) average number of condensed counterions, and
(c) polarizability for a PE of length N = 50 and box sizes D = 400 (stars), D = 200 (diamonds), and D = 100 (solid triangles).
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FIG. 2. Scaling plot of the polarizability for a PE with N =
50 monomers in a box of size D = 200, showing that & =
N.R}/NE.

limit x = 1 — 2/E with the condensation threshold at
E* = 2 is recovered [17], but for finite-length cylinders
an increasing box size D/L decreases the number of
condensed ions (and in an infinite box all counterions
are free). The inset of Fig. 1(b) shows numerical data for
the number of condensed ions for fixed coupling strength
E = 10 together with the asymptotic prediction Eq. (5).
The agreement is quite satisfactory, even though one is
far from the asymptotic limit of large L/a and D/L and
the PE is not a straight cylinder but undergoes a shape
transition from a cylindrical to a spherical morphology
for a characteristic value of E [18,19].

The rescaled dipole moment of the PE with its counter-
ions is given by P = ¥, 5;(F; — R,), where the sum in-
cludes only those counterions that are condensed [using
the same definition as for Fig. 1(b)] on the PE. In Fig. 1(c),
the polarizability according to the fluctuation-dissipation
theorem, & = kzTa/(gea)* = (P?/3), is shown. The
classical result for the polarizability of a sphere with

~

E=0.2 E=0.4
= ==
5 P

radius R and uniformly distributed charge Q around
an opposite point charge Q' is for Q = Q' given by
a =4meR? [20] or, in rescaled units, @ = R3/E.
Identical results are obtained from the Clausius-Mosotti
equation or using different, more complicated charge dis-
tributions [19]. For a system with a net charge, Q < @/,
the polarizability is reduced, @ = QR?*/EQ’. Accord-
ingly, we replot in Fig. 2 the data for D = 200 from
Fig. 1(c) as (&N/N,)'/? versus R,/E!/? together with a
straight line of slope unity, demonstrating that our simple
scaling model allows a quantitative description of the PE
polarizability [21].

Figure 3 shows a few snapshots for & = 20 and in-
creasing field strength, exhibiting an unfolding transition
of the PE condensate at a critical field strength. The
simulations are always run long enough to reach steady
state and to eliminate the pronounced hysteresis effects
(the time-dependent approach to steady state is currently
being studied [19]). We use periodic minimal-image
boundary conditions, i.e., counterions and the PE can tra-
verse the boundaries freely, but the minimal-image con-
ditions prevent the PE from interacting with itself. The
nonequilibrium unfolding transition manifests itself as a
rather abrupt increase of the rescaled end-to-end radius
R,/L [see Fig. 3(a)]. The number of condensed counter-
ions in the high-field extended configuration decreases
drastically (and as a consequence the PE mobility in-
creases [19]) as the box size becomes larger [see Fig. 3(b)].
It approximately equals the ratio of polymer length
and box size, N./N =~ L/D, since the counterions are
distributed almost evenly along the electric-field direc-
tion. The effective mobility of a charged particle is de-
fined as jii; = s,(F;(n + 1) — ¥;(n))/E and is equivalent to
the conductivity. While the mobility of the uncondensed
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FIG. 3.

PE snapshots for fixed coupling constant = = 20 and box size D = 200 and various rescaled field strengths, exhibiting an

Llnfolding transition at £ ~0.2. (a) End-to-end radius R,/L gnd (b) number gf condensed counterions lyc/N for a PE of length
L =100 (N =150), coupling constant & =20, and box sizes D =400 (stars), D =200 (diamonds), and D = 100 (solid triangles).
(c) Mobility of condensed/uncondensed counterions (triangles/stars) and of PE monomers (diamonds) for D = 200.
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FIG. 4. Induced dipole moment P, for £ = 20, D = 200 as a
function of the rescaled field E. The linear-response prediction,
P = a&E (solid line), and its limit of validity, P = 2/E (broken
line), are shown.

counterions is only weakly varying, the mobility of the
condensed counterions and the PE monomers is small at
low fields (mostly because the condensate is almost
charge neutral) and reaches its maximal value slowly as
the field increases [Fig. 3(c)]. Note that the bound counter-
ion mobility is negative slightly below the unfolding
threshold; counterions are dragged along with the PE in
their unfavorable direction.

In Fig. 4, we plot the z component of the dipole mo-
ment of the PE and its condensed counterion cloud for a
box size D = 200. The solid line is the linear-response
prediction P = «F or, in rescaled coordinates, P=akE
with @ = 36.7 taken from the static simulation data
[Fig. 1(c)]. The broken line denotes the threshold where
the rescaled polarization energy W, /kzT = PE/
2kgT = PE/2 reaches unity, ie., P =2/E. At this
threshold, the electric field is strong enough to orient
the spontaneous dipole moment of the PE globule and
to excite soft deformation modes: Linear-response theory
is expected to break down. [Also, nonequilibrium effects
are expected to be important at large electric fields.
However, it is difficult to clearly separate equilibrium
from nonequilibrium effects: In principle, an electric field
in the absence of conduction (dissipation) would lead to
similar effects, but such a scenario is impossible to study.]
As the data in Figs. 3 and 4 show, this threshold indeed
denotes the onset where the PE globule starts to unfold.
Combining the expression for the unfolding field
strength, E* = (2/a)'/? (as follows from the condition
Woot/ kT = @E?/2 = 1), our previously demonstrated
result for the polarizability of a nearly neutral globule,
& = R}/E, and the scaling of a compact globule, R = N,
we finally obtain E* =~ (£/N)'/2, or, in nonrescaled units,
eE* =~ kpT(a’N/€g)~"/2. This shows that the unfolding
field strength depends on the polymer length, which could
be used for electrophoretic separation studies of long PEs,
which are collapsed with some condensing agent: Since
the mobility is expected to change drastically with the
unfolding, at a suitably chosen field strength a rather
sensitive size discrimination should be possible since
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the longest PEs will have unfolded while the shorter
ones are still collapsed.

For DNA with a linear charge density g/2a =~ 6 nm™!,
one finds 2 = ¢?€y/a =~ 8¢ and thus Z ~ 24 for triva-
lent counterions (e.g., spermidine). A reduced critical
field, E* = 0.2, corresponds for a particle radius a =
0.25 nm and trivalent ions (¢ = 3) to a field of £ =6 X
10° V/m. Extrapolating our result for N = 50 to longer
PEs, we expect the unfolding to occur at E = 10° V/m for
N =10% and E = 10° V/m for N = 10° which are fea-
sible values for capillary experiments.

Additional salt in the solution may inhibit globule
formation at very large concentration; however, the
mechanism for the field-induced unfolding presented
here is quite insensitive to the addition of salt since the
polarizability of the globule is much higher than the
polarizability of the salt solution [19].

This work was financially supported by Deutsche
Forschungsgemeinschaft (DFG, SFB 486) and the Fonds
der Chemischen Industrie.

[1] M. Stevens and K. Kremer, Phys. Rev. Lett. 71, 2228
(1993).

[2] R.G. Winkler, M. Gold, and P. Reineker, Phys. Rev. Lett.
80, 3731 (1998).

[3] M.O. Khan and B. Jonsson, Biopolymers 49, 121 (1999).

[4] S. Liu and M. Muthukumar, J. Chem. Phys. 116, 9975

(2002).

[5] M. Olvera de la Cruz et al, J. Chem. Phys. 103, 5781
(1995).

[6] R.W.Wilson and V. A. Bloomfield, Biochemistry 18, 2192
(1979).

[71 V. A. Bloomfield, Biopolymers 44, 269 (1997).
[8] E. Raspaud, M. Olvera de la Cruz, J.-L. Sikorav, and
F Livolant, Biophys. J. 74, 381 (1998).
[9] Y. Yamasaki, Y. Teramoto, and K. Yosjikawa, Biophys. J.
80, 2823 (2001).
[10] N.C. Stellwagen, Adv. Electrophor. 1, 177 (1987).
[11] J.-L. Viovy, Rev. Mod. Phys. 72, 813 (2000).
[12] T. Duke and J. L. Viovy, Phys. Rev. E 49, 2408 (1994).
[13] A.N. Semenov and J.-E Joanny, Phys. Rev. E 55, 789
(1997).
[14] G.S. Manning, J. Phys. Chem. 85, 1506 (1981).
[15] D. Long, J.-L. Viovy, and A. Adjari, Phys. Rev. Lett. 76,
3858 (1996).
[16] G.S. Manning and U. Mohanty, Physica (Amsterdam)
247A, 196 (1997).
[17] G.S. Manning, Ber. Bunsen-Ges. Phys. Chem. 100, 909
(1996).
[18] E.J. Solis and M. Olvera de la Cruz, J. Chem. Phys. 112,
2030 (2000).
[19] X. Schlagberger and R. R. Netz (to be published).
[20] C.J.E Bottcher, Theory of Electric Polarization
(Elsevier, Amsterdam, 1973).
[21] A similar result is obtained for a PE wrapping around a
sphere; see J. Dzubiella, A. G. Moreira, and P. A. Pincus
(to be published).

128104-4



