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Quantum Computation with Unknown Parameters
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We show how it is possible to realize quantum computations on a system in which most of the
parameters are practically unknown. We illustrate our results with a novel implementation of a quantum
computer by means of bosonic atoms in an optical lattice. In particular, we show how a universal set of
gates can be carried out even if the number of atoms per site is uncertain.
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Furthermore, adiabatic passage techniques have been
proposed as a way of implementing a universal set of

some Im [8]. Outside of this, f�I� may change in different
experimental realizations. Below we analyze a particular
Scalable quantum computation requires the implemen-
tation of quantum gates with a very high fidelity. This
implies that the parameters describing the physical sys-
tem on which the gates are performed have to be con-
trolled with a very high precision, something which is
very hard to achieve in practice. In fact, in several sys-
tems only very few parameters can be very well con-
trolled, whereas others possess larger uncertainties. These
uncertainties may prevent current experiments from
reaching the threshold of fault tolerant quantum compu-
tation (i.e., gate fidelities of the order of 0.9999 [1]), that
is, the possibility of building a scalable quantum com-
puter. For example, in quantum computers based on
trapped ions or neutral atoms [2], the relative phase of
the lasers driving a Raman transition can be controlled
very precisely, whereas the corresponding Rabi frequency
� has a larger uncertainty ��. If we denote by T the
time required to execute a gate (of the order of ��1), then
a high gate fidelity requires T�� � 1 (equivalently,
��=� � 1), which may be very hard to achieve, at least
to reach the above mentioned threshold.

In this Letter we show how to achieve a very high gate
fidelity even when most of the parameters describing the
system cannot be adjusted to precise values. Our method
is based on the technique of adiabatic passage, combined
with some of the ideas of quantum control theory. We will
illustrate our method with a novel implementation of
quantum computing using atoms confined in optical lat-
tices [3,4]. If the number of atoms in each of the poten-
tial wells is uncertain, which is one of the problems with
this kind of experiment, most of the parameters will have
an uncertainty of the order of the parameter itself (e.g.,
j��j ��), which under normal circumstances will give
rise to very poor fidelities and even impede the perfor-
mance of quantum gates. As we will show, using our
method not only quantum computation is possible but
even very high fidelities could be achieved.

The use of adiabatic passage techniques to implement
quantum gates is, of course, not a new idea. In fact,
several methods to perform certain quantum gates using
Berry phases have been put forward recently [5–7].
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holonomies [7], i.e., quantum gates which are carried
out by varying certain parameters and whose outcome
depends only on geometrical properties of the paths in
parameter space [5]. In all these proposals, physical im-
plementations of standard quantum computation have
been adapted so that the quantum gates are performed
in an adiabatic way giving rise to holonomies. Despite its
clear fundamental interest, it is not clear yet if such a
novel way of implementing the quantum gates may offer
real benefits with respect to the original proposals. In
contrast, in our illustrative example adiabatic passage is
required to perform quantum gates and therefore it is an
essential tool not only to achieve the desired precision but
also to build a quantum computer at all.

The outline of the Letter is as follows. First we show
how to produce a universal set of gates (Hadamard, phase,
and CNOT) starting from two Hamiltonians in which only
one parameter is precisely controlled. Then we show that
this method eliminates an important obstacle in a par-
ticular physical scenario that has been proposed for quan-
tum computation [3], namely, a set of atoms in optical
lattices interacting via cold collisions.

Let us consider a set of qubits that can be manipulated
according to the single qubit Hamiltonian

H1 �
�

2
�z �

�

2
���ei’ � ��e�i’� (1)

and the two-qubit Hamiltonian

H2 �
~��j11ih11j �

~��
21 � ���ei’ � ��e�i’�: (2)

As mentioned above, we assume that most of the parame-
ters appearing in these Hamiltonians are basically un-
known. In particular, we assume that only ’ can be
precisely controlled. For the other parameters we assume
that (i) they are given by an unknown (single valued)
function of some experimentally controllable parameters
and (ii) they can be set to zero. For example, we may have
� � f�I�, where I is a parameter that can be experimen-
tally controlled, and we know only about f that f�0� � 0
and that we can reach some value �m � f�Im� � 0 for
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FIG. 1. Schema of how the parameters of Hamiltonian (1)
have to be changed in order to perform a phase gate (a) and
Hadamard gate (b). In (c) we show a possible evolution of the
parameters � and � for the Hadamard gate. The shape of �
emphasizes that the actual dependence is unimportant.
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physical scenario which exactly corresponds to this situ-
ation, but we stress that these conditions can be naturally
met in more general scenarios. For example, the qubit
states j0i and j1i may correspond to two degenerate
atomic (ground state) levels which are driven by two
lasers of the same frequency and different polarization.
The corresponding Hamiltonian is given by (1), where the
parameters ’;�;� describe the relative phase of the
lasers, the Rabi frequency, and detuning of the two-
photon Raman transition, respectively. The Rabi fre-
quency can be changed by adjusting the intensity of the
lasers, and the detuning and the phase difference by using
appropriate modulators. In practice, � (�) can be set to
zero very precisely by switching off the lasers (modula-
tors) and ’ may be very precisely controlled to any
number between 0 and 2�. However, fixing � or � to a
precise value (for example, 23.098 kHz) may be much
more challenging.

The idea of obtaining perfect gates with unknown
parameters relies on the combination of adiabatic passage
techniques [5] and ideas of quantum control [9]. Let us
recall the basic idea of adiabatic passage. Suppose we
have a Hamiltonian that depends parametrically on a
set of parameters, denoted by p, which are changed
adiabatically with time along a given trajectory p�t�.
After a time T, the unitary operator corresponding to
the evolution is

U�T� �
X
�

ei���� ��j��
p�T��ih��
p�0��j: (3)

Here, j���p�i are the eigenstates of the Hamiltonian for
which the parameters take on the values p. The phase ��
is a dynamical phase that explicitly depends on how the
parameters p are changed with time, whereas the phase
 � is a purely geometrical phase and depends on the
trajectory described in the parameter space. Our basic
idea to perform any given gate is first to design the change
of the parameters in the Hamiltonians (1) and (2) such
that the eigenvectors evolve according to the desired gate,
and then to repeat the procedure changing the parameters
appropriately in order to cancel the geometric and dy-
namical phases.

Let us first show how to perform the phase gate U �
ei��z=2. We set � � 0 for all times. The parameters ��; ’�
have to be changed as follows [see Fig. 1(a)]:

�0; 0�!
�i�
��m; 0�!

�ii�
��m; �=2� )

�iii�
��m; �=2� ��

!
�iv�

��m; �� ��!
�v�
�0; �� ��: (4)

Steps (i),(ii) and (iv),(v) are performed adiabatically and
require a time T. The double arrow of step (iii) indi-
cates a sudden change of parameters. Note that ��0� �
��2T� � 0, ��t� � ��2T � t�, and ’�t� � �� ��
’�2T � t�, which does not require the knowledge of the
function f but implies a precise control of the phase. A
simple analysis shows that (i)–(v) achieve the desired
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transformation j0i ! ei�=2j0i, j1i ! e�i�=2j1i. Note also
that the dynamical and geometrical phases acquired in
the adiabatic processes (i)–(v) cancel out.

The Hadamard gate can be performed in a similar
fashion. In the space of 
�;�x � �cos�’��, the protocol
is

�0;�m�!
�i�
��m;�m�!

�ii�
��m; 0� !

�iii�
��m;�m� !

�iv�
�0;�m�

)
�v�
�0;��m� !

�vi�
��;��m� !

�vii�
��; 0�; (5)

as shown in Figs. 1(b) and 1(c). In order to avoid the
dynamical phases, we have to make sure that steps (i)–(v)
are run in half the time as (vi)–(vii). More precisely, if
t < T, we must ensure that ��t� � ��T � t�, �x�t� �
�x�T � t�, ��T � t� � ��t=2�, and �x�T � t� �
�x�t=2�. With this requisite we get �1=

���
2

p
��j0i � j1i� !

j0i, �1=
���
2

p
��j0i � j1i� ! �j1i. Again, the whole proce-

dure does not require us to know � or �, but rather to
control the evolution of the experimental parameters
which determine them.

The CNOT gate requires the combination of two two-
qubit processes using H2 and one local gate. The first
process involves changing the parameters 
~��; ~��x �
~�� cos�’�� of Eq. (2) according to

�~��m; 0�!
�i�
�~��m; ~��m�!

�ii�
�0; ~��m� )

�iii�
�0;� ~��m�

!
�iv�

�~��m;� ~��m�!
�v�
�~��m; 0�: (6)

This procedure gives rise to the transformation

U1 � j0ih0j � 1 � ei�j1ih1j � i�y; (7)

where � �
R
T
0 ��t�dt is an unknown dynamical phase.

The second operation required is a NOT on the first qu-
bit U2 � �j0ih1j � j1ih0j� � 1. Finally, if ~���1��t� denotes
the evolution of ~�� in Eq. (6), we need to follow a
path such that ~���3��t� � ~���1��t�, ~���3��t� � 0. If the timing
127902-2
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is correct, we achieve U3 � �j0ih0j � ei�j1ih1j� � 1.
Everything combined gives us the CNOT up to a global
unimportant phase UCNOT � j0ih0j � 1 � j1ih1j � i�y �
e�i�U2U3U2U1.

In Fig. 2(a) we illustrate the performance of our
method, as well as its sensitivity against nonadiabatic
processes. As a figure of merit we have chosen the gate
fidelity [10] F � jTrfUy

idealUrealgj
2=d2, where d is the

dimensionality of the space (2 for local gates, 4 for
two-qubit gates),Uideal is the gate that we wish to produce
and Ureal is the actual operation performed. As expected,
for fixed parameters f�m=�m � ~��m= ~��m � 1=10; ’m �
�=4g, the adiabatic theorem applies when the processes
are performed with a sufficiently slow speed. Typically a
time T � 300=�m; 300= ~��m is required for the desired
fidelity F � 1� 10�4 [Fig. 2(a).]

Let us now consider a set of bosonic atoms confined in
a periodic optical lattice at sufficiently low temperature
(such that only the first Bloch band is occupied). The
atoms have two relevant internal (ground) levels, jai
and jbi, in which the qubit is stored. This setup has
been considered in Ref. [3] where it has been shown
how single quantum gates can be realized using lasers
and two-qubit gates by displacing the atoms that are in a
particular internal state to the next neighbor location. The
basic ingredients of such a proposal have been recently
realized experimentally [11]. However, in this and all
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FIG. 2. Log-log plot of the gate error, E � 1�F , for differ-
ent local and nonlocal gates. (a) Realization based on
Hamiltonians (1) and (2), with fixed parameters and varying
time. We plot the error for the Hadamard (solid line), phase
(dashed line), and CNOT gates (dotted line). (b)–(d) Errors for
our proposal with atomic ensembles. In (b) and (c) we plot
realizations for n � 1 (solid line) and n � 3; 5 (dashed line)
atoms per lattice site. In (d) we plot simulations with a differ-
ence of atoms of jn�mj � 0; 1; 2 between both wells (solid,
dashed, and dotted lines). All parameters except Ubb are fixed
to values given in the text. The curves (a),(b) appear random
due to the sampling of data.
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other schemes so far [12] it is assumed that there is a
single atom per lattice site since otherwise even the con-
cept of qubit is no longer valid. In present experiments, in
which the optical lattice is loaded with a Bose-Einstein
condensate [13,14], this is not the case, since zero tem-
perature is required and the number of atoms must be
identical to the number of lattice sites. We show now a
novel implementation in which, with the help of the
methods presented above, one overcomes this problem.

For us a qubit will be formed by an aggregate of atoms
at some lattice site. The number of atoms forming each
qubit is completely unknown. The only requirement is
that there is at least one atom per site [15]. We denote by
nk the number of atoms in the kth well and identify the
states of the corresponding qubit as

j0ik �
1�����
n!

p aynkk jvaci; j1ik �
1���
n

p byk akj0ik; (8)

where ayk (byk ) are the creation operators for one atom in
levels jai and jbi, respectively. The quantum gates will be
realized using lasers, switching the tunneling between
neighboring sites, and using the atom-atom interaction.

In the absence of any external field, the Hamiltonian
describing our system is

H �
X
k

�
�J�b�k �byk�1bk � byk bk�1� �

1

2
Ubbb

y
k b

y
k bkbk

�
:

(9)

Here, Ubb and J�b�k describe the interactions between and
the tunneling of atoms in state jbi.We assume that J�b�k can
be set to zero and increased by adjusting the intensities of
the lasers which create the optical lattice. We have as-
sumed that the atoms in state jai do not interact at all and
do not hop, something which may be achieved by tuning
the scattering lengths and the optical lattice. Both re-
strictions will be relaxed later on. The Hamiltonian (9)
possesses a very important property when all J�b�k � 0;
namely, it has no effect on the computational basis (i.e.,
Hj�i � 0 for all states j�i in the Hilbert space generated
by the qubits). Otherwise, it would produce a nontrivial
evolution that would spoil the computation.

We show now how a single qubit gate on qubit k can be
realized using lasers. First, during the whole operation we
set J�b�k � 0 in order to avoid hopping. The laser interac-
tion is described by the Hamiltonian

H�k�
las �

�k

2
�ayk ak � byk bk� �

�k

2
�ei’ayk bk � e�i’byk ak�:

(10)

For Ubb � j�kj; j�kj, we can replace (10) by an effective
Hamiltonian which resembles (1), with � � �k and � �
�k

��������������
nk � 1

p
. Thus, using the methods exposed above we

can achieve the Hadamard and phase gates with a high
precision, even though the coupling between the bosonic
ensemble and the light depends on the number of atoms.
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For the realization of the two-qubit Hamiltonian (2) we
need to combine several elements. First of all we need the
Raman coupling of Eq. (10) to operate on the second well.
Second, we need to tilt the lattice using an electric field,
Htilt �

P
k kg�a

y
k ak � byk bk�. And finally we must allow

virtual hopping of atoms of type jbi (J�b� � jUbb � gj).
After adiabatic elimination we find that the effective
Hamiltonian depends on the number of particles in the
second site, n2,

Heff
2 �

J2b
g�Ubb

j11ih11j �
��������������
n2 � 1

p
~��1 � �x: (11)

The identification with Eq. (2) is evident, and once more
the use of adiabatic passage will produce gates which are
independent of the number of particles.

We have studied the different sources of error which
may affect our proposal: (i) Ubb is finite and (ii) atoms in
state jai may hop and interact. These last phenomena are
described by additional contributions to Eq. (9) which are
of the form J�a�k �ayk ak�1 � ayk�1ak�, Uaaa

y
k a

y
k akak, and

Uaba
y
k b

y
k akbk. The consequences of both imperfections

are (i) more than one atom per well can be excited, (ii) the
occupation numbers may change due to hopping of atoms,
and (iii) by means of virtual transitions the effective
Hamiltonian differs from (1) and (2). The effects (i),(ii)
are eliminated if ��=Ubb�

2 � 1 and 
J�a�k =Ubb�
2 � 1.

We may analyze the remaining errors with a perturba-
tive study of the Hamiltonians (10) and (9) plus the
terms (J�a�; Uab; Uaa) that we did not consider before.
In Eq. (10), the virtual excitation of two atoms incre-
ments the parameter � by an unknown amount, �eff �
�� 2�2nk=���Uab �Ubb�. If Uab � Ubb and
�2nkT=Ubb � 1, this shift may be neglected. In the
two-qubit gates the energy shifts are instead due to vir-
tual hopping of all types of atoms. They are of the order of
max
J�b�; J�a��2=g2 � J2=Ubb, and for J2T=Ubb � 1 they
also may be neglected.

To quantitatively determine the influence of these er-
rors we have simulated the evolution of two atomic en-
sembles with an effective Hamiltonian which results of
applying second order perturbation theory to Eq. (9), and
which takes into account all important processes. The
results are shown in Figs. 2(c) and 2(d). For the two-qubit
gate we have assumed Uaa � Uab, J�a� � J�b� � J, Jm �
0:05Uab, �m � J2m=10, g � Ubb �Uab=2, and operation
time T � 200=�m, while changing the ratioUbb=Uab and
the populations of the wells. For the local gates we have
assumed �m � 1, �m � J=10, and different occupation
numbers nk, and we have also changed Ubb=�m.

We extract several conclusions. First, the stronger the
interaction between atoms in state jbi, the smaller the
energy shifts. Typically, a ratio Ubb � 104Uab is required
to make F � 1–10�4. Second, the larger the number of
atoms per well, the poorer the fidelity of the local gates
[Figs. 2(b) and 2(c)]. And finally, as Fig. 2(d) shows, the
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population imbalance between wells influences very little
the fidelity of the two-qubit gate.

Finally, we mention the effect of fluctuations of the
control parameters. By expanding our Hamiltonian as
H � Had�t� � �I�t�Hpert, where �I�t� represents the de-
viation from our adiabatic path, and writing the evolution
operator in the form U�t; 0� � Uid�t; 0�W�t�, with
i ddt Uad � HadUad, one may prove that the errors due to
random quick fluctuations are E � 1� jTrfW�t�gj2 �
2
R
�I�t�TrfQg �O��I2�. TrfQg is some constant, and

thanks to the randomness of �I�t�, the errors are at
most quadratic in the perturbation.

In this work we have shown that it is possible to
perform quantum computation even when the constants
in the governing Hamiltonians are unknown, by means of
adiabatic passage with one-qubit and two-qubit Hamil-
tonians. Based on this, we have proposed a scheme for
quantum computing with cold atoms in a tunable optical
lattice, which works even when the number of atoms per
lattice site is unknown. Note that these ideas also apply to
other setups, such as the microtraps realized in Ref. [16].
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