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Interface Energies in Ising Spin Glasses
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The replica method has been used to calculate the interface free energy associated with the change
from periodic to antiperiodic boundary conditions in finite-dimensional spin glasses. At mean-field
level the interface free energy vanishes, but after allowing for fluctuation effects, a nonzero interface
free energy is obtained which is significantly different from numerical expectations.
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tinct from m for the time being. Expanding the replicated
partition function in powers of m and n, and taking the

We assume that there is only spatial variation in the z
direction, which we take to be of length L. All directions
A central concept in the droplet picture of spin glasses
is the interface free energy [1–5] �F and the associated
stiffness exponent � defined by �F � l�, where l is the
length scale of the excitation. If � > 0 the spin glass state
is stable at finite temperature, whereas if � < 0 at T � 0
large scale excitations cost very little energy so the spin
glass state will be unstable at finite temperature. The value
of � at T � 0 has been estimated numerically, in many
calculations, for short-range spin glass models from the
effects of changes in boundary conditions; see, e.g.,
Refs. [6–9]. It is therefore surprising that no attempt has
so far been made to determine the interface free energy
from boundary condition changes using the alternative
‘‘replica symmetry breaking’’ (RSB) [10,11] scenario
for the spin glass state. In this Letter, we calculate �
analytically in high dimensions using the replica method
and show that it conflicts with expectations from the
droplet picture and numerical work on systems in lower
dimensions.

We define the interface free energy in the standard way
as the root mean square change in the free energy of a
spin glass when the boundary conditions along one direc-
tion (the z direction) are changed from periodic to anti-

periodic, i.e., �F �
���������������
�F2

P;AP

q
(here and in the following,

the overbar means averaging over bond configurations),
where �FP;AP � FP � FAP, and FP and FAP are the free
energies with periodic and antiperiodic boundary condi-
tions, respectively. Antiperiodic boundary conditions can
be realized by reversing the sign of the bonds crossing a
plane whose normal is parallel to the given direction. It
follows that �FP;AP � 0. We note that earlier attempts to
calculate a defect energy [12,13] did not employ a defi-
nition of it which is relevant to the droplet picture or
numerical studies.

It is convenient to replicate the system with periodic
boundary conditions n times and the system with anti-
periodic boundary conditions m times, and keep n dis-
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logarithm, we have

� lnZn
PZ

m
AP � �n�m�F �

�n�m�2

2
2�F2

�
nm
2

2�F2
P;AP � � � � ; (1)

where �F2 � F2
P � FP

2 � F2
AP � FAP

2 is the (mean
square) sample-to-sample fluctuation of the free energy,
the same for both sets of boundary conditions P or AP,
and F � FP � FAP . Hence, to find the variance of the
interface free energy �F2

P;AP, we expand lnZn
PZ

m
AP to sec-

ond order in the numbers of replicas, n and m, separate the
pieces involving the total number of replicas n�m, and
take the remaining piece, which is proportional to nm.

Using the standard replica field theory [14], we can
write Zn

PZ
m
AP �

R
Dq exp��H rep�, where H rep is the

replica free energy, expressed in terms of the spin glass
order parameter field, q��x�. It is given by

H rep �
Z

ddx
�
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(2)

where q� is a symmetric matrix with q�� � 0, and we
have omitted some unimportant terms of order q4 and set
� � 1� T=Tc. The fourth order term included is the one
responsible for replica symmetry breaking. The coeffi-
cients w and y are arbitrary positive parameters. The
replica indices go �;; � � 1; 2; . . . ; n; n� 1; . . . ; n�
m. The order parameter q divides naturally into blocks
of size n and m. From now on, Greek indices label the first
block, Roman ones the second block, so, for example, q�i,
means � 2 
1; n� and i 2 
n� 1; n�m�, and refers to
the respective entry in the off-diagonal, or mixed, sector.
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perpendicular to the z direction are of length M. The
volume of the system is V � Md�1L. Along the z direc-
tion, we impose the boundary condition that the solution
is periodic in the Greek and Roman sectors and is anti-
periodic in the mixed sectors reflecting the sign reversal
of the plane of bonds in the one sector with respect to the
other:

q��z� � q��z� L�; qij�z� � qij�z� L�;

q�i�z� � �q�i�z� L�:
(3)

At mean-field level, there is the following stable so-
lution for lnZn

PZ
m
AP:

� lnZn
PZ

m
AP � H repfq

SPg; (4)

where

is independent of the spatial coordinates and Q�s� is a
Parisi symmetry broken saddle point solution of size
s� s, with the necessary modification for finite positive
s as derived in [15], i.e.,

where P�s=p� is a ‘‘standard’’ Parisi matrix. The limit
p ! 1 in Eq. (6) should be interpreted in the same sense
as for a standard replica symmetry breaking procedure,
i.e., as taking p to infinity when it is convenient during a
calculation.

It is natural that the diagonal blocks are the same as the
regular Parisi ansatz because ordering in the system with
periodic boundary conditions, say, should not be affected
by there being another completely independent copy with
different boundary conditions. Choosing the mixed sector
to vanish seems to be consistent with the standard inter-
pretation [16] of RSB in short-range systems, namely, that
changing the boundary conditions changes the system
everywhere. More precisely, the surface of the domain
wall separating the regions which flip from the regions
which do not flip is space filling. In this situation, one can
reasonably expect zero overlap between configurations
with different boundary conditions.

This solution is identical to the solution one obtains
using the correct way of breaking the symmetry, as
presented in [15], for a n�m-times replicated system
(n�m being finite) without boundary condition changes.
We can therefore immediately use the result from
[15] that at mean-field level, there is no term of order
�n�m�2, let alone of order nm, and thus the interface
energy vanishes to this order.
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We now turn to the loop expansion about the saddle
point, which is expected to be valid for dimension d
greater than 6. The first correction is due to Gaussian
fluctuations around the saddle point solution. They are
given by

� lnZn
PZ

m
AP � H repfqSPg �

1

2

X
k

I�k2�; (7)

where

I�k2� �
X
%

d% ln�k2 � &%�; (8)

k is a d-dimensional wave vector and &%; d% are the
eigenvalues of the Hessian, evaluated at the saddle point
solution, and their degeneracies. The eigenvalues &% and
degeneracies d% are the same as for a system of size
n�m without boundary condition changes (because the
saddle point solution is the same), only the nature of the
k vectors changes for the terms involving eigenvalues
whose corresponding eigenvectors f are nonzero exclu-
sively in the mixed sector (i.e., f� � fij � 0): the wave
vectors have to respect the imposed boundary condi-
tions, which implies k � 
2n1(=M; . . . ; 2nd�1(=M;
�2nd � 1�(=L� (with ni 2 Z) in the mixed sector as
opposed to k � �2n1(=M; . . . ; 2nd�1(=M; 2nd(=L� in
the Greek or Roman sectors.

It was shown in [15] for a system without boundary
condition changes that it is initially easier to compute
@I=@�k2� than I itself and that it is given in terms of the
diagonal propagators G�;� (or Gxx

11 in the limit of in-
finitely many replica symmetry breaking steps [14]) as

@IP
@�k2�

�
X
�<

G�;� � �
n
2

Z 1

n
dxGxx

n ; (9)

where we have dropped the subscript 11 from the propa-
gators as it is irrelevant here and replaced it by n since the
propagators depend on it.

Therefore, the contribution to @I=@�k2� from those
eigenvectors that are nonzero in the Greek or Roman
sectors (the periodic sectors, hence the subscript P below)
is

@IP
@�k2�

� �
n
2

Z 1

n
dxGxx

n �
m
2

Z 1

m
dxGxx

m (10)

� �
n�m

2

Z 1

0
dxGxx

0 �
n2 �m2

2
G00

0 : (11)

The last line follows from the modified symmetry break-
ing procedure [Eq. (6)], as was shown in [15]. The origin
of the term linear in n�m in Eq. (10) is the eigenvectors
that are nonzero in a Parisi block P�n=p� or P�m=p� on the
diagonal [15], while the origin of the n2 �m2 term is the
eigenvectors that are nonzero in the off-diagonal blocks.
This observation facilitates calculating the contribution
from the mixed sector as there are only eigenvectors
of the latter type present, i.e., there is no term of linear
order. Therefore, @IAP=@�k2� is given by
127202-2
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@IAP
@�k2�

� nmG00
0 ; (12)

where the prefactor nm reflects the number of eigen-
vectors in the mixed sector.

The integral
R
d�k2�G00

0 and the constant of integration
have been worked out in [15], resulting in

J�k2� :�
Z

d�k2�G00
0

� ln

�
k2 �

x21w
2

2y

	

�
w�4yk2 � wx1�

yk2
���������������������������
4yk2 � w2x21

q tan�1 wx1���������������������������
4yk2 � w2x21

q ; (13)

where x1 is the breakpoint of the Parisi q function. We
can now assemble in I the terms of quadratic order,

I � �n�m�C�
n2 �m2

2
JP�k2� � nmJAP�k2� (14)

� �n�m�C�
�n�m�2

2
JP�k

2� � nm
JAP�k
2� � JP�k

2��:

(15)
The constant C is of no interest to us. The subscripts P
and AP on J mean that J must be taken as 0 when the
argument is not of the required type, i.e., periodic or
antiperiodic.

We can now identify the term that gives rise to the
interface energy. Comparison with Eq. (1) shows

2�F2
P;AP �

�X
AP

�
X
P

	
J�k2�

�
X
l

X1
r��1

�
J
�
l2 �

�2r� 1�2(2

L2

	

� J
�
l2 �

�2r�2(2

L2

	�
; (16)

where the subscripts on the sums indicate the nature
of the allowed k vectors, as made explicit in the second
part of the equation where the z component of the k vector
has been split off, leaving the d� 1-dimensional wave
vector l. The sum over the z component has been extended
to �1, introducing only exponentially small errors for
large L.

We note a potential pitfall in this result: the contribu-
tion to Eq. (16) from the k � 0 term (in

P
P ) diverges.

Usually, this problem is removed by converting the sums
to integrals converging in high enough dimensions and
arguing that the divergence is, in reality, only a sub-
dominant contribution. However, since � < �d� 1�=2
[4], the interface energy is subdominant itself, so it is
not clear whether the subdominant terms from the k � 0
mode are in fact dominating over the terms we kept.
Therefore, we need to treat the k � 0 mode properly
before proceeding. The way to do this is to go to the
equation of state for q� and include the k � 0 mode
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exactly, while treating the other modes perturbatively as
before. The complete equation of state is given by Eq. (15)
of Ref. [14], and restricted to the k � 0 mode it reads

2�q� � w�q2�� �
2y
3

q3
�

� �
1

V

�
w

X
���;

G��;��k � 0�

� 2yq�G�;��k � 0�

�
: (17)

This equation is highly nontrivial since G in this expres-
sion is the full propagator. We do not propose to solve this
formidable self-consistency equation, but we note that the
presence of the right-hand side shifts q� by an amount
.� from the mean-field value, which in turn shifts the
eigenvalues of the Hessian. The left-hand side is given byP

�� G�1
�;���k � 0�.�� � O�.� [recalling that G�1�k �

0� is equal to the Hessian]; the right-hand side is of order
1=V&min, where &min is the smallest eigenvalue of the
Hessian. If &min � O�.�, which is the natural expectation,
it follows that &min � V�1=2. Therefore, G�k � 0� has
changed from being infinite to being of order V1=2. This
argument is not rigorous, however; therefore, we prefer to
denote the exponent more generally by 2%. The upshot of
this treatment is that we can exclude the divergent k � 0
terms from the sums over wave vectors (as they have been
dealt with nonperturbatively), provided a term of order
V2%, where % may be 1=4, is introduced in the n2 and m2

terms in Eq. (14). This additional term is identical to the
free energy fluctuations in the Sherrington-Kirkpatrick
model, which has only the k � 0 mode, and will be
denoted by �f2

SKV
2%. This observation allows us to

obtain estimates of % from existing numerical work
[17–19], which supports % � 1=4.

Since we are expecting that the changes to the eigen-
values are of order V�1=2, while the changes due to the
different boundary conditions are of order 1=L2, our
treatment of the nonzero k modes will be satisfactory in
the range of dimensions where the loop expansion applies,
i.e., d > 6.

Upon completing the square as in Eq. (15), the contri-
bution �f2

SKV
2% appears in the nm term, so from Eq. (16)

we get

2�F2
P;AP �

X
l�0

X1
r��1

�
J
�
l2 �

�2r� 1�2(2

L2

	

� J
�
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�2r�2(2

L2

	�

� 2
X1
r�1

�
J
�
�2r� 1�2(2

L2

	
�J

�
�2r�2(2

L2

	�

��f2
SKV

2%: (18)

The sums over r in Eq. (18) can be calculated exactly,
in principle, and the sum over l can be converted to an
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integral with a lower cutoff and carried out, but the result
is too long to show here. The important feature of it is that
the leading behavior as a function of L is determined
by the divergent part of J as k2 ! 0. The other parts of
J give only exponentially small corrections. Since
J�k2� � �(w=4yk2 for small k2, it is sufficient to work
out the term

�w(
4y

X1
r��1

�
1

l2 � �2r�1�2(2

L2

�
1

l2 � �2r�2(2

L2

	
�

w(L
4yl sinhlL

:

(19)

Together with
P

1
r�1


1
�2r�1�2

� 1
�2r�2

� � (2=12, this gives

2�F2
P;AP � Md�1 Sd�1

�2(�d�1

Z 1

2(=M
dlld�2 w(L

4yl sinhlL

�
w(
24y

L2 � �f2
SKV

2%

� L2f2�L=M� �
w(
24y

L2 ��f2
SKV

2%; (20)

where

f2�L=M� �
w(Sd�1

4y�2(�d�1

�
M
L

	
d�1Z 1

2(L=M

dx xd�3

sinhx
(21)

is an exponentially decreasing scaling function and Sd is
the surface of a d-dimensional unit sphere.

Only the first term in Eq. (21) has a form compatible
with aspect ratio scaling [20], according to which���������������
�F2

P;AP

q
� L�f�L=M�. On the face of it, this would

give rise to � � 1 for all dimensions. The other two terms,
however, do not have aspect ratio scaling form. In par-
ticular, the term �f2

SKV
2%, which is dominant in d > 6

if % > 1=6, depends only on volume but not on shape.
Our calculation is exact in high dimensions within the

replica symmetry breaking scenario for spin glasses. It is
quite unusual and contradicts all expectations one might
have about the interface energy based on experience from
other systems and numerical data. It is significantly dif-
ferent from that found in, for instance, ferromagnets.
There, the defect energy comes from the gradient term
in the analog of Eq. (2). Here, on the other hand, the
mean-field solution is independent of z so there is no
contribution from the gradient term. A difference be-
tween the interface energy in spin glasses and ferromag-
nets is, however, that in ferromagnets there is a ‘‘real’’
domain wall, whereas in spin glasses, the interface can be
defined only by comparing one system to a reference
system with the opposite set of boundary conditions.
Thus, strictly speaking, the interface in spin glasses is
not a physical system itself, which may account for the
absence of an interface energy on the mean-field level.

The failure of aspect ratio scaling is a strong prediction
which contradicts numerical evidence for d � 2 [20,21].
The replica symmetry breaking scenario predicts space-
127202-4
filling domain walls [16,22]; therefore, the dependence of
the interface energy on volume but not on shape (to
leading order) appears natural since the interface ex-
plores even the remote corners of the sample and would
be likely to exist in some form down to three dimensions,
even though the loop expansion used in this Letter will
need modification below six dimensions. This suggests a
simple test of replica symmetry breaking ideas. If they
are valid in three dimensions, then aspect ratio scaling
will fail. To date, there is (weak) evidence that aspect
ratio scaling works in three dimensions [20].
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