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Scaling in the One-Dimensional Anderson Localization Problem in the Region
of Fluctuation States

L. I. Deych, M.V. Erementchouk, and A. A. Lisyansky
Physics Department, Queens College of City University of New York, Flushing, New York 11367

(Received 5 July 2002; published 27 March 2003)
126601-1
We numerically study the distribution function of the conductivity (transmission) in the one-
dimensional tight-binding Anderson model in the region of fluctuation states. We show that while
single parameter scaling in this region is not valid, the distribution can still be described within a
scaling approach based upon the ratio of two fundamental quantities, the localization length, lloc, and a
new length, ls, related to the integral density of states. In an intermediate interval of the system’s length
L, lloc � L� ls, the variance of the Lyapunov exponent does not follow the predictions of the central
limit theorem, and may even grow with L.

DOI: 10.1103/PhysRevLett.90.126601 PACS numbers: 72.15.Rn, 41.20.Jb, 42.25.Bs
dimensional models [8]. For the Lloyd model, the authors
of Ref. [9] showed that Eq. (1) (corrected by a factor of 2)

the in-band states can be considered settled by the SPS
theory, the properties of the distribution function of
Introduction.—A coherent transport in mesoscopic dis-
ordered systems is characterized by strong fluctuations
and the non-self-averaging nature of the transport coef-
ficients such as conductance, g, or transmittance, T [1,2].
Therefore, a description of the transport in such systems
requires dealing with entire distribution functions of the
respective quantities. The scaling approach to the trans-
port allows one to introduce a reduced ‘‘macroscopic’’
description of such distributions independent of micro-
scopic details of the underlying Hamiltonians [3,4] with
parameters of the distributions playing the role of the
scaling variables [4]. If the entire distribution can be
parametrized by a single parameter, the respective system
is said to obey single parameter scaling (SPS). A quantity,
which is most convenient to work with when describing
the statistics of transport is the Lyapunov exponent (LE),
~���L� � �1=2L� ln�1� 1=g�, where L is the length of the
system [4,5]. Finite size LE, ~���L�, is self-averaging
quantity (it approaches a nonrandom limit �, when L!
1 [2]), and its distribution approaches a Gaussian form
for asymptotically long systems. The Gaussian distribu-
tions are characterized by two parameters, the mean
value, �, and the variance, �2, and the SPS hypothesis
suggests that they are related to each other in a universal
way. Such a relation, which can be expressed in the form

	 � �2Llloc � 1; (1)

where lloc � 1=� is identified with the localization
length, was first conjectured by Anderson et al. [4] and
reproduced later by many authors within the framework
of the phase randomization hypothesis [2]. The phase
randomization was proven rigorously for in-band states
(those belonging to the spectrum of underlying ordered
systems) for some one-dimensional models (the Anderson
model [6] and a continuous model with a white-noise
random potential [7]), as well as for some quasi-one-
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holds for in-band states even though the distribution of
phases is not uniform.

At the same time, numerical results presented in
Ref. [10] showed that Eq. (1) is not valid for fluctuation
states arising due to disorder outside the original spec-
trum. A boundary between SPS and non-SPS spectral
regions in the exactly solvable Lloyd model was shown
to be determined by a relation lloc�E� � ls�E� [9], where ls
is a new length, defined through the number of states,
N�E�, per unit length, between E and the closest genuine
spectral boundary:

l	1
s � sin

N�E��: (2)

In the region of fluctuation states, when N�E� � 1, or 1	
N�E� � 1, so that ls � lloc, SPS is not valid.
Complimenting analytical calculations by numerical
simulations, the authors of Ref. [9] showed that the crite-
rion for SPS found for the Lloyd model is valid for other
models as well.

Thus, it is clear that the problem of the statistics of
transport in the region of fluctuation states requires a
separate consideration. The distinction between this situ-
ation and the case of in-band states can be qualified as a
difference between underbarrier tunneling and overbar-
rier scattering. In 3D this difference is clear: the latter
case corresponds to the spectral region of extended states
with the diffusive transport, while the former takes place
in the region of localized states. The problem of the
underbarrier tunneling in disordered systems was first
considered in Ref. [5] (for reviews of subsequent papers
see Refs. [11,12]). In a 1D situation all states are local-
ized, and the transmission for all energies can be de-
scribed as a resonant tunneling via rare transparent
configurations [13]. Therefore, the difference between
the two transport regimes is more subtle and was noticed
only recently [9,10]. Correspondingly, while the case of
2003 The American Physical Society 126601-1
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FIG. 1. Dependence of the scaling parameter 	 on � � lloc=ls
for a set of potentials (U � 0:08	 0:155). In the inset depen-
dence 	��� in the non-SPS region (�� 1) is shown in log- log
scale for 1< L=ls < 5.
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conductance/transmittance for a pure one-dimensional
case of underbarrier tunneling are studied very little.
Besides obvious fundamental importance, an additional
motivation to deal with this problem comes from the
development of photonic band gap materials, in which a
new type of fluctuation photonic states is possible [14].
These states form ‘‘Lifshits tails’’ in the band gaps of
disordered photonic structures, and provide a unique op-
portunity to study resonant underbarrier tunneling with a
scattering of light.

The main objective of the present paper is to study
numerically the distribution function of LE in the region
of fluctuation states using ideas of the scaling approach.
The main question, which we seek to answer is the
following: ‘‘Is the distribution function of the LE in the
non-SPS region determined completely by microscopic
details of the respective Hamiltonian, or can it still be
described macroscopically in a universal manner?’’ We
show that the distribution of conductance in this region,
while not completely universal, still demonstrates sur-
prising scaling properties. In particular, using Monte
Carlo simulations for the one-dimensional tight-binding
Anderson model with diagonal disorder, we find that for
sufficiently long systems the function 	, introduced in
Eq. (1), depends upon a single parameter, � � lloc=ls. We
also find strong deviations of the distribution function
from the Gaussian form. However, the third moment
turns out to have the same scaling behavior as the vari-
ance, indicating that despite the deviation of the distri-
bution function from the Gaussian, it still can be
parametrized by only two parameters, lloc and ls.

Model and technical details.—We consider the tight-
binding model with a diagonal disorder, which is de-
scribed by the following equations of motion:

 n�1 �  n	1 � �Un 	 E� n � 0; (3)

where random on-site energies Un are described by a
uniform probability distribution: P�Un� � 1=�2U� if
jUnj<U, and P�Vn� � 0 otherwise. LE is defined as

��E� � lim
N!1

1

N
logkTN � � �T1k � lim

L!1
~���L�; (4)

where Tk are transfer matrices

Tk �
�
E	Uk 	1

1 0

�
: (5)

LE is calculated iteratively using Eq. (4) in a standard
way [15]. To investigate the statistics of ~���L� in systems
with the finite length L, we keep L fixed while collecting
statistics from about 120 000 realizations. The integral
density of states for each realization was calculated using
the phase formalism [2] and was averaged over all real-
izations. The resulting value was used to calculate the
length ls according to Eq. (2). Studying the dependence of
the distribution of ~�� on L we take care to have L� lloc
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for all strengths of the disordered potential,U, and values
of energy, E. However, in the region of fluctuation states,
where lloc < ls, it is possible to have ls > L� lloc. In this
regime, which does not exist in the SPS region, the L
dependence of the variance may be different from the
standard behavior given by the central limit theorem. In
order to verify this assumption, we considered systems
with lengths satisfying both L < ls and L > ls. When
collecting statistics, we discarded all data corresponding
to lloc < 5 and ls > 1000L. This way we ensured that our
results were not influenced by nonrepresentative fluctua-
tions and states localized over microscopical regions of
the sample.

Results.—Figure 1 shows the dependence of the scaling
function 	 defined in Eq. (1) on � in the asymptotic limit
of very long systems, L� ls; lloc. Data used to generate
this figure were obtained for different values of E and U,
and one can see that they all fall nicely on the scaling
curve 	���. For � > 1, 	 approaches its universal SPS
value of unity while for smaller � it steeply decreases.
A similar result was obtained for a periodic-on-average
model in Ref. [9], where the scaling function 	��� was
originally proposed. Our results convincingly show that
�2 can indeed be expressed in terms of the scaling
function 	��� regardless of the microscopic nature of
the model under consideration.

While the exact shape of the function 	��� varies
slightly from model to model (compare to the results of
Ref. [9]), the essential qualitative properties of 	 seem to
be quite universal. We are most interested in the region
� < 1, where 	 demonstrates a sharp decrease. Analytical
calculations carried out in Ref. [9] for the Lloyd model
produced 	��� � �. Our results show, however, a much
steeper decrease of 	. Also, in the model considered here,
126601-2
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FIG. 2. Index of the scaling parameter � (filled squares, left
axis) and factor C (circles, right axis) as functions of L=ls.
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	��� must remain nonzero for � � 0. Indeed, � � 0 cor-
responds to the exact genuine boundary of the spectrum
of our system. Unlike the Lloyd model, where the spec-
trum boundary is at infinity, in our model the boundaries
of the spectrum are at Eb � ��2�U�. The variance of
LE does not vanish at finite energies, and therefore 	lim �
	�0� is not equal to zero.

In order to understand the behavior of 	 at �� 1 we
conduct a detailed study of this region for systems with
different L. Our results can be summarized in the follow-
ing form:

	 � C�� � 	lim: (6)

Replotting 	��� in log- log coordinates for � < 1 (see
inset of Fig. 1) we see that while � changes by more
than 2 orders of magnitude, the data form a good straight
line with the exception of points corresponding to ex-
tremely small values of �. This means that 	lim can be
neglected for most of the non-SPS region, and becomes
significant only in the immediate vicinity of Eb. Using
linear regression we can estimate parameters C and � for
systems with different lengths. The results of the fit reveal
that C and � are constants independent of any parameters
of the system under consideration for L > ls. This result
confirms the one-parameter form of 	��� given by the first
term of Eq. (6) for sufficiently long systems. The degree of
universality of these coefficients still remains an open
question requiring similar studies of other models.We can
speculate, however, that it is likely that systems can be
divided into several universality classes on the basis of
the values of C and �.

For shorter systems with L< ls, both C and � show
additional dependence upon the length L; see Fig. 2 where
� and C are plotted versus L=ls.

The results of this analysis lead to two important con-
clusions. First, the length ls not only establishes the
boundary between SPS and non-SPS regions of the spec-
trum, but also determines a crossover system length
marking the transition to systems with a universal single
parameter form for 	. Second, as it was anticipated, in the
regime lloc � L < ls the scaling of the variance of LE
changes from the simple 1=L dependence to a more
complicated form due to the dependence of � on L=ls.
We attempted to fit this dependence in the region of small
L=ls by several types of trial functions; the best fit was
obtained with ��L=ls� � ln�ls=L�. With this assumption a
new scaling for the variance becomes

�2 /
1

Llloc
exp
��L=ls� ln�� / L

	�1�ln��: (7)

It is interesting to note that when � decreases, 1� ln�
becomes negative and �2 starts growing with L in this
interval of lengths. This behavior can be qualitatively
understood from the following arguments: The condition
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L� ls means that for most of the realizations of the
random potential no states exist in the energy interval
under discussion. The transmission through such realiza-
tions fluctuates rather weakly. The greatest contribution
to the transmission fluctuations give those few realiza-
tions that can support at least a single state. The proba-
bility for such realizations to arise grows when the length
of the system increases, resulting in the respective in-
crease of �2.

This behavior, of course, breaks down for very large
values of ls, which correspond to states close to the
genuine spectral boundary, because for these states �2

is determined by a nonuniversal correction to 	 given by
	lim. This limiting value can be found using the weak
disorder expansion of Derrida et al. [16], which gives

	lim �
�2
U

4�0 sinh
2�0

/
����
U

p
; (8)

where �2
U � U2=3 is the variance of the potential, �0 is

LE in the gap region of the original ordered system, and
we use the fact that Eb � 2�U for the system under
consideration. One can see from this expression that 	lim
depends on microscopic characteristics of the original
Hamiltonian. However, for a model with a Gaussian dis-
tribution of site energies, the genuine spectral boundary
lies at infinity, where �0 ! 1. The first of the equalities
in Eq. (8), which can be applied to various distributions,
gives in this case 	lim � 0. We can expect this to be
true for all models with spectral boundaries at infinity.
For this class of models, 	��� gives a completely univer-
sal, at least within a given model, description of the
variance of LE.

In order to characterize deviations of the distribution
function of LE from the Gaussian form, we also studied
scaling properties of the third cumulant % � hh��	
h�i�3ii, which describes the skewness of the distribu-
tion function. To analyze scaling properties of % we
126601-3
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FIG. 3. Dependence of 	3 on � deeply inside of the non-SPS
region (�� 1). In the inset scaled third cumulant %L2 is
depicted as a function of the energy near the band edge for
the potential U � 0:05 and sample lengths from 1040 to 2160.
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introduced a function analogous to

	3 � %L2lloc: (9)

One can see from Fig. 3 that while data for the parameter
	3 are rather noisy, it shows a relatively good scaling
behavior as a function of the single parameter � in the
non-SPS region. This fact itself is quite remarkable since
it demonstrates that even deviations from the Gaussian in
the region of fluctuation states can be described within the
scaling procedure suggested here. It is interesting to note
that the sign of skewness changes not very far from the
boundary between SPS and non-SPS regions of the spec-
trum. In the SPS region the absolute value of skewness
decreases dramatically becoming essentially zero within
the accuracy of our calculations. This is illustrated in the
inset of Fig. 3, which represents the energy dependence of
the third moment of the distribution. The skewness also
decreases deeper in non-SPS regions where it becomes
extremely small beyond the genuine spectral boundary.
The quality of our raw data did not allow us to determine
if 	3 also depends upon L=ls for shorter systems, but we
expect that 	3 behaves similar to 	 in this regard.

Conclusion.—In this Letter we carried out a detailed
study of the distribution function of conductance in the
spectral region of fluctuation states. We showed that apart
from a small nonuniversal contribution, which is impor-
tant only in the immediate vicinity of the genuine spec-
tral boundary, the conductance distribution in this region
can be described using a simple scaling approach. Within
this approach the variance is described by the scaling
function 	, Eq. (1), and the third moment of the distribu-
tion is characterized by the function 	3, Eq. (9). For long
enough systems both scaling functions depend on the
single variable � � lloc=ls. The presence of such a scaling
behavior would be natural for the model with the white-
126601-4
noise potential, because such a model has a natural scal-
ing variable E=�3=2

U [2], and our scaling parameter �
depends on only this variable [9]. Our numerical results
showed, however, that the parameter � provides a more
universal description of the distribution function valid
also outside of the white-noise model. While we consid-
ered here only the tight-binding model, we believe that
our results qualitatively describe statistics of light trans-
mission through band gaps of disordered photonic crys-
tals. Experimental measurements of the transmission
distribution in such systems can be used for verification
of our results and as a method of measuring parameters
lloc and ls.
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