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Finite Temperature Spectral Function of Mott Insulators and Charge Density Wave States
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We calculate the low-temperature spectral function of one-dimensional incommensurate charge
density wave states and half filled Mott insulators. At T � 0 there are two dispersing features
associated with the spin and charge degrees of freedom, respectively. We show that already at very
low temperatures (compared to the gap) one of these features gets severely damped. We comment on
implications of this result for photoemission experiments.
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temperature in the physically relevant case N � 2 by
means of a systematic expansion in exp��	=T�, where

H c �
c

16�
�K�1

c �@x�c�
2 � Kc�@x�c�

2	; (3)
The determination of the finite temperature single-
electron Green’s function in strongly interacting one-
dimensional (1D) electron systems with a spectral gap
is a problem of significant interest as the spectral function
A�!; q� is expected to exhibit the celebrated property of
spin-charge separation. Rather than a single coherent
quasiparticle peak, one expects to see two broad features
in A�!; q�, which are associated with the independent
dispersion of spin and charge collective modes. This
phenomenon also occurs in the case of a 1D metallic
Luttinger liquid state. The great advantage of the insulat-
ing state is that due to the presence of a gap it is much
more robust against the effects of 3D couplings, tem-
perature, or impurities. Hence the chances to observe
spin-charge separation by means of angle resolved photo-
emission spectroscopy (ARPES) are higher in Mott in-
sulators (MI) or charge density wave (CDW) insulators
than in metallic systems. Unfortunately it is much more
difficult to determine dynamical correlation functions in
these states. The very existence of a gap prohibits the
application of methods based on conformal field theory
such as the Luttinger liquid approach. A further compli-
cation is that the gap is dynamically generated, which
invalidates mean-field approximations to the problem. In
light of these difficulties, 1=N expansions have been a
method of choice, where N is a large parameter intro-
duced by enlarging the spin rotational symmetry of the
Hamiltonian from SU�2� to SU�N�.

In this Letter we derive asymptotically exact expres-
sions for the spectral function and the tunneling density
of states for incommensurate CDW states and half filled
MI in the field theory limit. The reason to treat both cases
at once is that the results for the MI can be obtained from
those for the CDW state. At T � 0 we perform our cal-
culations for general N, which allows us to see how the
large-N result progressively loses its accuracy as N de-
creases and for N � 2 no longer reproduces even quali-
tative features of the solution. We demonstrate that
Luttinger’s theorem continues to hold despite the absence
of a Fermi surface. Finally we consider the effects of
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	 is the spectral gap. There has been much previous work
on determining the T � 0 spectral function of 1D MI and
CDW states. In Ref. [1] a conjecture for A�!; q� was put
forward, which agrees with the result we obtain in the
field theory limit by means of an exact, systematic
method. Expressions for the spectral function have also
been obtained in the limit where the single-particle gap is
much larger than the bandwidth [2]. This regime is com-
plementary to the case we address here. Finally there also
have been extensive numerical studies on t-J and Hubbard
models, e.g., Refs. [3,4].

Incommensurate CDWstate.—As a starting point for a
microscopic description of the CDWstate one may choose
a model of noninteracting electrons at some incommen-
surate band filling, coupled to 1D phonons. Examples are
the Su-Schrieffer-Heeger [5] and Holstein [6] Hamil-
tonians. The electronic low-energy degrees of freedom
have momenta close to the Fermi momenta �kF. In the
low-energy sector the electron operators can therefore be
represented as

cn;� �
�����
a0

p
�eikFxR��x� � e�ikFxL��x�	; (1)

where a0 is the lattice spacing, x � na0, and R and L are
slowly varying Fermi fields. In three spatial dimensions
the presence of an electronic spectral gap would auto-
matically imply the formation of an anomalous average
hRy

��x�L��x�i � 0. In one dimension the average is not
formed even at T � 0; instead correlation functions of the
operator Ry

�L� decay in a power-law fashion. In the limit
of infinite phonon frequency !0 the phonons can be
integrated out without inducing retardation effects in
the resulting effective electron Hamiltonian [7]. The
case of large but finite !0 can be treated similarly, as
long as one is interested only in low energies! !0 [8].
In this regime the electronic model obtained by integrat-
ing over the phonon degrees of freedom is described by
the following universal Hamiltonian:

H � H c �H s; (2)
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H s �
2�vs

3
�:JaJa: � : �JJa �JJa:	 � vsgJ

a �JJa: (4)

Here �c is a canonical Bose field, �c is its dual field, and
Ja � Ly

��a��0L�0 , �JJa � Ry
��a��0R�0 are current operators

satisfying the level-1 SU(2) Kac-Moody algebra. The
parameters vc;s (charge and spin velocities), 	 (spin
gap), and Kc (Luttinger liquid parameter) depend on the
details of the underlying microscopic lattice model and,
in particular, on !0. The parameter Kc controls the scal-
ing dimensions in the charge sector.

Half filled MI.—The Hamiltonian (2)–(4) is identical
to the low-energy theory for a half filled MI like the
Hubbard model, provided we interchange charge and spin
sectors c$ s and then set Ks � 1, kF � �=2. Below we
present results for the more general CDW case with the
understanding that the corresponding results for the MI
are obtained by the aforementioned mapping.

Zero temperature.—The model (2)–(4) is generalized
to SU�N� by replacing the currents in (4) by their SU�N�
analogs. The spectrum in the charge sector is gapless
Ec�k� � vcjkj, whereas the spectrum in the spin sector
consists of scattering states of electrically neutral, mas-
sive solitons with dispersion Es�k� �

�������������������������
	2 � �vsk�

2
p

and
their bound states for N > 2; the presence of bound states
does not affect the results presented here. For small
g 1 we have 	 � Dg1=Ne�2�=Ng, where D�!0 is
the ultraviolet cutoff. The electron operators can be ex-
pressed as products of (vertex) operators acting in the
charge and spin sectors, respectively,

hL���; x�L
y
��0�i �

Y
 �c;s

hO ��; x�O
y
 �0�i: (5)

Using the results of [9,10] we obtain the following result
for the asymptotics of the single-particle Green’s function
at zero temperature:

G��; x� � e�ikFxGR��; x� � eikFxGL��; x�; (6)

GL��; x� ’
ZN	��������������
�vsvc

p
2�

�
2vc=	

�vc�� ix�

�
1=N

�
�2vc=	�2

x2 � v2
c�

2

�
#=2

�

�
vs�� ix
vs�� ix

�
��N�1�=�2N�	

K1��1=N��	r�; (7)

where r �
������������������������
�2 � x2v�2

s

p
, ZN is a nonuniversal constant,

and # � �1=2N��Kc � �1=Kc� � 2	. We note that
GR��; x� � GL��;�x�. Equation (7) is derived by taking
into account processes with emission of an arbitrary
number of charge excitations and only one massive spin
excitation. The corrections to (7) are of order O�e�3	r� for
N � 2. However, due to the fact that matrix elements
corresponding to the emission of multisoliton states are
numerically small, the accuracy achieved by this approxi-
mation is very good. The smallness of matrix elements
also allows us to generalize our calculations to finite T. In
the case of equal velocities vs � vc � v the retarded
126401-2
Green’s function at T � 0 for right moving fermions is

GR�!; kF � q� �
ZN
�1=2

�

�
1 �

#
2

�
�

�
2 �

1

N
�
#
2

�
!� vq

	2

� F
�
1 �

#
2
; 2 �

1

N
�
#
2
; 2;

s2

	2

�
; (8)

where F is a hypergeometric function and s2 �
!2 � �vq�2. As might be expected, the gap in the spec-
tral function is ‘‘clean,’’ i.e., AR�!; kF � q� �

�ImGR�!; kF � q�=� vanishes for j!j �
�����������������������
	2 � v2q2

p
.

The zero temperature tunneling density of states is

%�!� ’ AN
Z arccosh�!=	�

0
dx

cosh�x�1 � 1=N	�

�!=	 � coshx�1�#�1=N
; (9)

where AN � �ZN21��1=N��#��
��������������
�vsvc

p
��� � 1=N�	�1. We

see that at T � 0, %�!� vanishes inside the gap. The singu-
larity just above the threshold [0< �!=	� � 1  1] is

%�!� ’
ANB�#�

1
N ;

1
2����

2
p �!=	 � 1�#��1=N���1=2�: (10)

We note that for the physical case N � 2 the ‘‘asymp-
totic’’ result (10) is actually equal to (9). According to
(10) the behavior of %�!� above the gap is determined by
the scaling exponent 1=2 � 1=N � #. The nonuniversal
part # is small for large phonon frequencies. On the other
hand, the remaining part is determined only by the
Lorentz spin of the spinon creation operator and therefore
is universal. Equations (9) and (10) show that a 1=N
expansion fails completely in the physically relevant
case N � 2, where the tunneling density of states experi-
ences a qualitative change and becomes nonsingular at
the threshold. As we have alluded to earlier, the N ! 1
limit agrees with the mean-field results of Ref. [11].

Luttinger’s theorem.—The Green’s function (8) has
branch cuts, but no poles. In particular, there are no poles
at zero frequency and thus no Fermi surface. Nevertheless
Luttinger’s theorem as stated in Ref. [12] is fulfilled since
the logarithm of the Green’s function lnG�! � 0; kF � p�
is still singular at the noninteracting Fermi surface, be-
cause the Green’s function (8) has zeroes. This property
follows from (i) the fact that the charge sector is gapless,
which implies that hR���; x�L

y
��0�i � 0 and (ii) Lorentz

invariance of the low-energy effective theory, which im-
plies that

h����; x��
y
��0�i � exp��i*�R�r�; � � R;L: (11)

Here r and * are polar coordinates and R denotes the
radial part of the correlation function. As we are dealing
with an insulating state we have R�r� / exp��	r� at
large distances and hence

R
drR�r�r is finite. Thus

GR;L�0; 0� �
Z �

��
d* exp��i*�

Z
drR�r�r � 0: (12)

For a metallic state the r integral would diverge and the
126401-2
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Green’s function would have a singularity rather than a zero.
Finite temperature.—Let us now turn to the general case vc � vs and finite temperatures. We will restrict the

discussion to N � 2. The spectral function is conveniently expressed as a convolution

AR�!; kF � q� �
1

�2��3

Z 1

�1
d!0dq0~ggs�!

0; q0��~ggc�!�!0; q� q0� � ~ggc��!�!0;�q� q0�	; (13)

where ~ggc;s�!; q� are the Fourier transforms of the finite temperature correlators hOc;s�x; t�O
y
c;s�0; 0�iT . In the charge

sector we can use the standard conformal mapping to obtain (see, e.g., [13])

~ggc�!; q� � C�T�f
�
!� vcq

2�T
;
1 � #

2

�
f
�
!� vcq

2�T
;
#
2

�
; f� ;-� � Re

�
��2i�-B

�
-� i 

2
; 1 � -

��
; (14)

where C�T� � �vc=2�3�1=2�2�=	�#T#�3=2 and B�x; y� is the Euler beta function. The correlation function in the spin
sector can be determined by using exact results for the SU(2) Thirring model. We invoke a spectral representation in
terms of scattering states of solitons and antisolitons, constructed by means of the Zamolodchikov-Faddeev algebra
(see, e.g., Ref. [14]).We introduce an index / � � for solitons and antisolitons, respectively, and parametrize energy and
momentum by a rapidity variable # in the usual way as E�#� � 	cosh#, P�#� � �	=vs� sinh#. In a basis of scattering
states j#n � � � #1i/n���/1

of solitons and antisolitons with rapidities #j the following spectral representation for thermal
two-point functions holds

hOy�!; q�O��!;�q�iT �
X
n;f/jg

1

n!

Z Yn
j�1

d#j
2�

X
m;f/0kg

1

m!

Z Ym
k�1

d#k
2�

j/1���/nh#1 � � � #njO�0; 0�j#0m � � � #01i/0m���/01 j
2

� e�
P

n
j�1

E�#j�=T�2��23

 
!�

Xn
j�1

E�#j� �
Xm
k�1

E�#0k�

!
3

 
q�

Xn
j�1

P�#j� �
Xm
k�1

P�#0k�

!
: (15)

As was shown recently, the representation (15) is suitable for carrying out a low-temperature expansion (T & 	) of
correlation functions [15,16]. Taking into account the two leading terms n � 0, m � 1 and n � 1, m � 0 in (15) and
combining this result with (13) and (14) we obtain

AR�!; kF � q� � A
Z 1

�1
dzez=2

�
~ggc�!� c�z�; q� s�z��� e�c�z�=T~ggc�!� c�z�; q� s�z���

�
!! �!
q! �q

��
; (16)
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FIG. 1. Spectral function AR�!; kF � q� at T � 0, # � 0:8,
vc � 0:4vs for vsq=	 � �2;�1; 0; 1; 2 (from bottom to top).
The curves for different values of q have been offset.
where A �
�������������������
��	=vs�

p
�Z2=�2��

3	, c�z� � 	coshz, and
s�z� � �	=vs� sinhz. Let us now see how changing # and
T affects AR�!; q�. We constrain our discussion to the
cases of zero temperature and varying # and of finite T
and fixed #. As a function of #, AR�!; kF � q� displays a
strongly varying behavior. For small #, corresponding to
a high phonon frequency, the spectral function is very
similar to the one of the half filled MI (see the dotted
curves in Fig. 2): there are two sharp, dispersing features
associated with the spin and charge degrees of freedom,
respectively. For smaller phonon frequencies and con-
comitantly larger # these features become less prominent
until they eventually disappear altogether. We plot
AR�!; kF � q� at T � 0 for the intermediate value # �
0:8, vc � 0:4vs and several values of q in Fig. 1. We see
that the peak associated with vs is already quite weak.
The effects of a small, finite temperature T � 0:05	 are
shown in Fig. 2 for a half filled MI (we now switch spin
and charge sectors as discussed above and set # � 0, kF �
�=2). Compared to the T � 0 result we find that the holon
peak is significantly damped although T is still quite
small compared to the low-energy scale 	. The physical
reason for this is very simple: in the MI only the charge
sector is protected by the gap, whereas the gapless spin
sector is significantly affected by T. This leads to a
126401-3
damping of the peak associated with the charge degrees
of freedom, whereas the spinon peak stays rather sharp.

We note that ARPES measurements on 1D cuprate Mott
insulators [4] are taken at room temperature in order to
avoid charging of the sample. The temperature used in
Fig. 2 is chosen to reflect the ratio T=	 in the experiments
126401-3
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FIG. 2 (color online). Spectral function for a half filled MI
(# � 0, vs � 0:5vc), T � 0 (dotted lines) and T � 0:05	 (solid
lines) vcq=	 � �1:5;�1; . . . ; 2:5 (from bottom to top). The
curves for different values of q have been offset.
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on Sr2CuO3. Although the theory presented here does not
describe the 1D cuprate MI quantitatively (U=t is too
large in these compounds), we believe that our result
gives a strong indication that temperature effects are
important and at least partially account for the fact that
the holon feature is barely visible in the data. The low-T
behavior of the tunneling density of states can be ana-
lyzed analogously. We find

%�!� �
Z 1

�1

dx

�2��3
%s�x�%c�!� x� �!! �!; (17)

where

%c�x� � DRe

�
��2i�#��1=2�B

�
1 � 2#

4
� i

!
2�T

;
1

2
� #

��
;

%s�x� ’ Z2

�����
�
vs

r
�#H�!� 	� � e�j!j=T#H��!� 	�	

�

2
64

�����������������������������������
j!j �

�������������������
!2 � 	2

pq
�������������������
!2 � 	2

p �

�����������������������������������
j!j �

�������������������
!2 � 	2

pq
�������������������
!2 � 	2

p

3
75;

(18)

where D � �2�=	�#�8�=vc�1=2T#�1=2. In the regime
T  ! 	 we may use contour techniques to extract
the leading contribution to (17)

%�!� �
Z22

#

��12 � #�
����������
vcvs

p

���������������
T

	 �!

r
e��	�!�=T: (19)
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This shows that at low temperatures only an exponen-
tially small fraction of spectral weight gets transferred
into the gap. In summary, we have calculated the low-
temperature spectral function for incommensurate CDW
states and half filled Mott insulators in the field theory
limit. Luttinger’s theorem is shown to hold despite the
absence of a Fermi surface. We have studied the effects of
temperature on the two dispersing features associated
with spin and charge degrees of freedom. We demon-
strated that already a small temperature essentially wipes
out the holon peak in the half filled Mott insulator.
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