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Discrete Boltzmann Equation for Microfluidics
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We propose a discrete Boltzmann model for microfluidics based on the Boltzmann equation with
external forces using a single relaxation time collision model. Considering the electrostatic interactions
in microfluidics systems, we introduce an equilibrium distribution function that differs from the
Maxwell-Boltzmann distribution by an exponential factor to represent the action of an external force
field. A statistical mechanical approach is applied to derive the equivalent external acceleration force
exerting on the lattice particles based on a mean-field approximation, resulting from the electro-
static potential energy and intermolecular potential energy between fluid-fluid and fluid-substrate
interactions.
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discretized in the velocity space in a way which guaran-
tees that the Navier-Stokes equation can be obtained at a
macroscopic level.

Martys et al. [7] pointed out that Fr�f is identical to
Fr�feq up to second order because the first two Hermite
coefficients of the distribution function are always the
Computer simulations of microfluidic dynamic prob-
lems involving microscale interfacial interactions are of
both fundamental and practical importance [1–3]. These
interfacial electrokinetic and intermolecular interactions
occurring in microfluidic systems affect strongly the
physical and chemical properties of the fluid and substan-
tially influence the heat, mass, and momentum transport.
Traditional computational fluid dynamics methods for
macroscopic hydrodynamic equations have many diffi-
culties in this area due to the presence of an electrical
double layer (EDL) between the fluid and channel wall.
Since such complexity is essentially due to microscopic
interparticle interactions, lattice Boltzmann simulation
provides an excellent alternative to model such a complex
fluid dynamics problem [4–6].

In this Letter, we propose a discrete Boltzmann equa-
tion for microfluidics that is based on the continuous
Boltzmann equation using a single-relaxation-time ap-
proximation (Bhatnagar-Gross-Kooky collision model).
A computational scheme using the derived discrete Boltz-
mann equation for microfluidics will be briefly discussed.
Considering electrostatic interactions in microfluidic sys-
tems, we use an equilibrium distribution function that
differs from the Maxwell-Boltzmann distribution by a
factor (Boltzmann factor) to represent the action of an
external force field. A statistical mechanical approach is
applied to derive the equivalent external acceleration
force exerting on the lattice particles by means of the
electrostatic potential energy, intermolecular potential
energy between a pair of fluid molecules, and substrate
potential energy due to the interactions between the fluid
and substrate. The effect of the external force on flow
properties is formally absorbed into the equilibrium dis-
tribution. The continuous Boltzmann equation is then
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We start with the following continuous Boltzmann
equation using a single-relaxation-time approximation
as a collision model:

@f
@t

� �rf� Fr�f � �
f� feq

�
; (1)

where f � f�x; �; t� is the single-particle distribution
function in the phase space �x; ��, and � is the microscopic
velocity; F is an external force vector which can depend
on both space and time, � is a relaxation time due to
collision, and feq is an equilibrium distribution function.
At steady state, a fluid in microfluidic systems with a
conservative force field is characterized by a distribution
function that differs from the Maxwell-Boltzmann dis-
tribution by an exponential factor (known as the
Boltzmann factor):
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where 	 is the fluid density, kB is the Boltzmann constant,
and U�x� is the potential energy of conservative force
field; cs and D are the sound speed in a fluid and dimen-
sion of space, respectively. The macroscopic density 	,
velocity u, and energy � are calculated as the moments of
the distribution function f by
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same as those in the local Maxwellian distribution. Thus,
we assume

r�f � r�f
eq � �

�� u

c2
s

feq (6)

and, consequently, obtain
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We note that the term 	F��� u�=c2
s


�1 in the above
equation is of the unit of time; hence, we introduce
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as the reciprocal of equivalent relaxation time due to the
action of an external force. Accounting for local infor-
mation at each collision, we obtain the evolution equation
of the distribution function f with discrete time as

f�x� ��t; �; t� �t� � f�x; �; t�

� �
1

�

�
f�x; �; t� �

�
�0
feq�x; �; t�

�
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where � � �=�t is a dimensionless relaxation time. In
most microfluidic systems, the fluid is in contact with a
plane (surface) which is charged and chemically hetero-
geneous. The charged surface causes a redistribution of
ions in the fluid near the surface and results in an EDL.
Thus, transport of microfluid by means of an external
pressure is retarded by the presence of the double layer
(EDL). On the contrary, the EDL induces fluid flow when
an external electric field (electro-osmosis) is applied.
This is known as the electrokinetic phenomena.

In the lattice Boltzmann Eq. (9), the external force
term experienced by each particle can be expressed as

F � Fext � q��Eint � �� Bint� � FV; (10)

where Fext represents the external body forces, Eint and
Bint are, respectively, internally smoothed electric and
magnetic fields due to the motion of all charged particles
inside the fluid (e.g., the space charge in the microflu-
idics), and FV is a single equivalent force due to inter-
molecular potential energy. To obtain an equivalent force
exerting on the lattice particles in the mean-field approxi-
mation, we employ the canonical ensemble, in which a
thermodynamic equilibrium state of the lattice system is
uniquely specified by the temperature T, volume Vf �
As�, and number of fluid molecules Nf; A is the surface
area of a square lattice space defined as �2

x, and, hence,
s� � �x�� � x; y; z�. Here we consider a cubic lattice
space with A � �2

x corresponding to the area of a direct
face of the lattice space. Since the lattice system is ther-
mally open to its environment, an infinitesimal, reversi-
ble transformation of the lattice is governed by
Helmholtz’s fundamental relation in differential form as
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dFH � �SdT �#dNf � TxxAdsx � TyyAdsy � TzzAdsz

� �SdT �#dNf � dW; (11)

where FH � U� TS is the Legendre transformation of
the internal energy U, S is the entropy, Nf is the number
of molecules accommodated by the lattice, and T�� (� �
x; y; z) are diagonal elements of the stress tensor T asso-
ciated with the exchange of compressional work W as

dW �
X
�

T��Ads�: (12)

The well-known statistical thermodynamic relation is
applied to establish the linkage to the molecular scale.
Knowing the canonical partition function % and treating
the fluid particles as independent and indistinguishable,
we obtain the Helmholtz free energy of the fluid in the
chosen lattice.

FH�T; Vf; Nf� � �&�1 ln%; (13)

where & � 1=kBT; Vf � �3
x is the volume of the lattice.

The canonical partition function for a classical system in
which the molecules possess only a translational degree of
freedom is expressed as

%�T; Vf; Nf� �
1

Nf!
3Nf
ZNf �T; Vf; Nf�; (14)

where 
 represents the thermal de Broglie wavelength
and ZNf is the configurational integral defined as

ZNf �T; Vf; Nf� �
Z
V
Nf
f

drNf exp��&U�

�
YNf
i�1

Z
exp��&U�dr: (15)

For the lattice configuration in microfluidic systems, the
configurational energy U can be written as

U � UES �UFF �UFS; (16)

where UES, UFF, and UFS represent the interaction poten-
tial energy contributed by electrostatics (ES), fluid-fluid
(FF), and fluid-substrate (FS) interactions, respectively,
in the system. The electrostatic energy contribution UES

can be obtained by summing over all ions in the chosen
lattice:

UES �
X
i

qi	 �ri� �  ref
: (17)

 �ri� is the potential of the electrostatic field situated at ri.
 ref is the reference electrostatic potential which is a
constant. The fluid-fluid contribution of the potential en-
ergy UFF is given by

UFF �
1

2

XNf
i�1

XNf
j�1�i

uff�rij�; (18)

where
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uff�rij� � 4�ff
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�

(19)

is the pairwise additive Lennard Jones 12:6 potential; �ff

is the well depth of the fluid-fluid interactions, , is the
molecular hard-sphere diameter, and rij is the distance
between a pair of molecules i and j as

rij � jrijj �
�������������������������������������������������������������������������
�xi � xj�2 � �yi � yj�2 � �zi � zj�2

q
:

The fluid-substrate contribution of the potential energy
can be expressed as

UFS �
XNf
i�1

��xi; yi; zi�; (20)

where � is a mean-field potential. We adopt a mean-field
representation of the interaction between a fluid molecule
with the substrate. This is obtained by averaging the fluid-
substrate interaction potential over the positions of sub-
strate atoms in the x-y plane. As illustrated in Ref. [8],
substrate atoms are assumed to be of the same diameter
(,) which occupies the sites of the face centered cubic
(fcc) lattice having a lattice constant l, with �l as the
spacing between successive crystallographic planes in the
�z direction. We also include nanoscale heterogeneity of
the substrate by representing � � �fs [i.e., ufs�r�] as the
interaction of a fluid molecule with a substrate atom in the
strong cell, and � � �fw [i.e., ufw�r�] as the interaction of a
fluid molecule with a substrate atom in the weak cell. The
resulting mean-field potential can be expressed as

��x; y; z� � nA
X1
m�0

Z yb

ya

dy0
Z xb

xa

dx0ufs�jr� r0j�; (21)

where nA � 2=l2 is the areal density of the (100) plane for
the fcc lattice. In the above integral, xa and xb refer to
integration limits in the x direction; ya and yb refer to
those in the y direction. The symbol m is the mth succes-
sive crystallographic plane of substrate in the �z direc-
tion. According to Eq. (11) and consistent with the
fundamental equation, we can define the thermodynamic
expression

AT�� �

�
@FH
@s�

�
T;Nf;s&

: (22)

The above equation can be rewritten as

T�� �� �A&%��1 1

Nf!
3Nf

@
@s�

�


YNf
i�1

Z
exp	�&�UES �UFF �UFS�
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�
: (23)

Differentiation of Eq. (23) yields three terms which we
group as
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T�� � T��;ES � T��;FF � T��;FS: (24)

We introduce the probability density function
fT;Vf;Nf �r

Nf ; Nf� of the canonical ensemble as
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%
1

Nf!
3Nf
exp	�&U
: (25)

Thus, one can find the electrostatic field contribution by
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; (26)

where the term hs�@UES=@s�i is Clausius’s virial for the
electrostatic potential energy with the fluid-fluid contri-
bution given by

T��;FF �
1

Vf

�
s�
@UFF

@s�



: (27)

Similarly, hs�@UFF=@s�i is Clausius’s virial for the fluid-
fluid intermolecular potential energy. The fluid-substrate
contribution is defined by

T��;FS � �
1

A

Z
V
Nf
f

drNffT;Vf;Nf �r
Nf ; Nf�

"XNf
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1
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*XNf
i�1

s� �ff�;i

+
; (28)

where

�ff�;i � �
@��x; y; z�

@s�
; � � x; y; z: (29)

It has been shown from the above derivation that the
thermodynamic properties of the lattice system can be
calculated from the molecular expression as ensemble
averages. In practice, the Monte Carlo method can be
employed to compute the ensemble average without re-
quiring knowledge of the configuration.

Given the proper discretization of phase space, the
lattice Boltzmann equation with the appropriate equilib-
rium distribution function can also be derived. On a
square two-dimensional lattice, for example, we obtain
the equilibrium distribution function of the 9-bit lattice
Boltzmann equation (LBE) model as

feq
� � !�	 exp

�
�
U�x�
kBT

��
1 �

3�e�u�

c2 �
9�e�u�2

2c4 �
3u2

2c2

�
:

(30)

The discrete velocity set on the lattice structure is
e� �

8<
:
�0; 0�; � � 0
c�cos4�; sin��; 4� � 


2 ��� 1� � � 1; 2; 3; 4���
2

p
c�cos4�; sin4��; 4� � 


2 ��� 5� � 

4 ; � � 5; 6; 7; 8

; (31)

and the corresponding weight coefficient set is
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FIG. 1. Schematic of fluid particles in the interfacial lattice
where the substrate has a linear nanoscale surface hetero-
geneity.
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1

36 ; i � j � 1; . . . ; � � 5; 6; 7; 8

: (32)

As an illustration, we consider a microfluidic system
where the substrate has a linear nanoscale surface hetero-
geneity such that a constant interaction potential energy
UFS gradient exists between the fluid and the substrate
(Fig. 1). Thus, the Clausius’s virial for the fluid-substrate
contribution is proportional to the constant gradient of
interaction potential energy. It is anticipated that more
fluid molecules will approach the fluid-solid interface
where the interaction potential is higher. As there exists
a linear gradient of UFS�x�, more molecules will remain
on the relatively higher energy sites, leaving the lower
energy sites at a lower density. Thus, this results in a stress
tensor Txx;FS in the direction of the streamline, as indi-
cated in Fig. 1. Its magnitude can be large when compared
with the thermodynamic pressure that equals the normal
stress tensor of a chemically homogeneous substrate.
When the fluid is driven by externally applied forces,
the induced stress tensor due to such surface heterogene-
ities may lead to flow slip at the fluid-substrate boundary.
This slip velocity and the equivalent slip length can be
estimated from the discrete LBE model described here.
For a typical Poiseuille flow, if the precollision unknown
distribution is set equal to the value of the distribution
along the opposite direction, the slip velocity Us can be
obtained as

Us �
2���� 1�

3	5
�2
xF; (33)

where 5 is the kinematic viscosity of the fluid. Clearly,
there will be a nonzero slip velocity as long as � � 1,
corresponding to cases where over-relaxation (� > 1) or
short-relaxation (� < 1) collision of particles occurs in-
side the lattice system. It can also be found that the slip
velocity is directly proportional to the induced stress
tensor due to the linear nanoscale heterogeneities on the
substrate surface. Therefore, a possible mechanism for
fluid slip in microfluidic systems can result from the
nanoscale heterogeneities on the substrate surface
where the slip velocity is dependent on the gradient of
the interaction potential energy between the fluid and
substrate.

In summary, a complete discrete Boltzmann equation
for microfluidics has been constructed by consideration
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of externally applied body force, macroscopic internal
field, and equivalent external force due to intermolecular
potential energy.
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