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Mean Effects of Turbulence on Elliptic Instability in Fluids
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Elliptic instability in fluids is discussed in the context of the Lagrangian-averaged Navier-Stokes-
alpha (LANS-�) turbulence model. This model preserves the Craik-Criminale (CC) family of solutions
consisting of a columnar eddy and a Kelvin wave. The LANS-� model is shown to preserve elliptic
instability. However, the model shifts the critical stability angle. This shift increases (decreases) the
maximum growth rate for long (short) waves. It also introduces a band of stable CC solutions for short
waves.
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circulation and vorticity dynamics of the NS equations. bance’’ u1 are called �-CC flows. The incompressibility
Elliptic, or tilting, instability is a fundamental phe-
nomenon in fluids that results from parametric reso-
nance. This is the mechanism by which vortex stretching
creates three-dimensional instabilities in swirling two-
dimensional flows. Specifically, the energy in an ellipti-
cal columnar eddy may be transferred to a propagating
Kelvin wave [1] by this mechanism. A breakthrough in
the study of this problem occurred when Craik and
Criminale [2] showed that superposing a columnar eddy
and a Kelvin wave yields an exact solution of the Navier-
Stokes (NS) equations. Thus, the elliptical instability can
be treated as a modulation of the Craik-Criminale (CC)
family of solutions by using Floquet analysis as was first
done by Bayly [3]. The history of discovery and redis-
covery of elliptic instability in laminar fluids is reviewed
by Kerswell [4]. Here we address the mean effects of
turbulence on the elliptic instability. We show that the
CC family of superposed solutions is preserved by the
closure model we shall consider. For this model, we show
that turbulence enhances the growth rates of elliptic in-
stability for Kelvin wavelengths that are longer than the
turbulence correlation length. Conversely, turbulence is
found to suppress elliptic instability at the shorter wave-
lengths and to create a band of stable CC flows with
nonzero eccentricities.

The turbulence model we shall consider is the
Lagrangian-averaged Navier-Stokes-alpha (LANS-�)
model [5], whose equations are
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together with r � u � 0. In this model, the mean fluid
velocity u is related to the mean momentum v via the
Helmholtz operator �1� �2�� as v � u� �2�u. This
Helmholtz filtering of the fluid velocity introduces the
length scale � as a parameter in the model. The LANS-�
model preserves the fundamental transport theorems for
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Direct numerical simulations of the LANS-� model for
forced homogeneous turbulence show it to be consider-
ably less computationally intensive than the exact NS
equations while preserving essentially the same behavior
as NS at length scales larger than alpha [6]. The unforced,
inviscid Euler-� form of these equations first appeared in
the context of averaged fluid models [7]. The basic proper-
ties of the LANS-� model, its comparison with experi-
ment, and its early development are reviewed in Ref. [8].
See also Ref. [9] for additional results for this model. As
discussed in Ref. [7] the LANS-� turbulence equations
formally coincide in the inviscid limit with a classic
rheological model known as the second-grade fluid [10].
Thus, the present results for the inviscid elliptic instabil-
ity apply to both the LANS-� turbulence model and to
rheology of second-grade fluids.

We construct an exact solution to Eq. (1) with zero
divergence of the form u0�x; t� � S�t�x� U�t�, where Sx
is the action of the matrix S on the vector x � 	x; y; z
T

from the left. The matrix S is a time dependent matrix
with zero trace such that dS=dt� S2 � M�t�, where
M�t� is a symmetric matrix which contains the contri-
butions of U�t�. The corresponding pressure p0 is ob-
tained from M�t�; see Ref. [2] for details. We
nondimensionalize the system using the variables x0 �
x=l, t0 � !t, u0 � u=!l, v0 � v=!l, �0 � �=

��
l

p
, where l

is a typical length scale and ! � jr
 u0j. The resulting
equation with the prime notation suppressed is Eq. (1)
with � replaced by �=!. We construct a second solution to
Eq. (1) of the form u0 � u1 with corresponding pressure
p0 � p1, where

u1 � �a�t� sin�� �x; t��; (2)

p1��p̂p11�t�cos�� �x;t����2p̂p12�t�cos
2�� �x;t��; (3)

 �x;t��k�t� �x�g�t�, and� and � are scaling factors so
that we can choose the initial conditions ja�0�j�1 and
jk�0�j�1. The unknown phase  �x;t� and the amplitudes
a�t�, p̂p11�t�, and p̂p12�t� are to be determined. Such flows
which are the sum of a ‘‘base flow’’ u0 and a ‘‘distur-
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condition gives
a �k�0: (4)

The evolution equations for the amplitudes and phase are

�@t�Sx �r� �U �k�0; (5)

�@t�Sx � r���1���a���STa�

Sa���p̂p11 ��2�2a �Sk�k��
�1�����2

!
jkj2a;

(6)

p̂p12 ��jaj2 � 0: (7)

Here �� �2�2jkj2. Note that the amplitude scaling � is
immaterial. The parameter � couples various terms
throughout the system. Moreover, this coupling in �
appears only in the combination �, which is proportional
to the wave number squared. Consequently, this coupling
affects the high wave-number behavior of the solution for
�� 0. Equation (5) states that the phase is advected with
the base flow. Only two free parameters remain (� and
E!) upon introducing the vorticity based Ekman number
E! � ��2=!. Without loss of generality, we set @g=@t�
k �U� 0. Denoting the material derivative as d=dt�
�@t�Sx � r� and taking the gradient of Eq. (5) reduces
Eqs. (5) and (6) to a system of ordinary differential
equations:

dk
dt

�STk� 0; (8)
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where ~PP is the coefficient of k in Eq. (6), $�r
u0

is the (normalized) vorticity of the base flow, and
�S�ST�a�$
a. We eliminate the pressure term by
taking the dot product of Eq. (9) with k and by using
da=dt �k��a � dk=dt� Sa �k, the first of which fol-
lows from Eq. (4) and the second from Eq. (8):

~PP�
1

jkj2
f�1����S�ST�a �k�$
a �kg: (10)

In summary, we have obtained a new exact incompres-
sible solution to Eq. (1). The variables are amplitude a�t�
and wave vector k�t�. Once these are determined, the
pressure terms follow from Eqs. (7) and (10). Note that
u0 and u0 �u1 are exact solutions to the nonlinear equa-
tions, but u1 by itself is only a solution to Eq. (1) linear-
ized about u0. Finally, we emphasize that the operator
d=dt�ST acting on a vector represents the complete time
derivative of that quantity in a Galilean frame moving
with u0.

Insight into the dynamics of the problem can be gained
by examining Eq. (9) in the asymptotic regimes � � 1
and � � 1, where � � �2�2jkj2. [We assume that jk�t�j
remains bounded and never vanishes.] For � � 1, Eq. (9)
becomes
da
dt

� STa � �E!jkj2a�$
 a�
2Sa � k
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Combined with Eq. (8), this equation preserves a � k � 0 at each order. The O�1� term in the above equation is exactly
the expression for the amplitude of the modulated traveling wave in the CC flow for the classical NS equations. This, of
course, is expected since Eq. (1) reduces to the NS equations for � � 0. Thus, to leading order, the amplitude decays
with viscosity, stretches with the base shear, and rigidly rotates with the vorticity of the base flow. For � � 1, Eq. (9)
becomes

da
dt

� STa � �E!jkj2a�
2Sa � k
jkj2
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�
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�
: (12)
Again, this equation preserves a � k � 0 at each order.
Thus, as � ! 1 (corresponding to either �! 1 or
�! 1), the evolution of the amplitude is independent
of the vorticity of the base flow.

One may simplify these equations by absorbing vis-
cosity (E!) into an integrating factor in the change of
variables a � ~aa exp��

R
E!jk���j2d��. Thus, it suffices

to examine the inviscid case for the LANS-� model. This
transformation does not apply to the viscous second-grade
fluid model. Therefore, the viscous results for the two
models will differ.

As an example, we examine the stability of a rotating
column of fluid with elliptic streamlines whose foci lie on
the y axis and vorticity $ � !êez:

u0 �
1

2
!Lx; L �

0
@ 0 �1� � 0
1� � 0 0
0 0 0

1
A: (13)
Here 0 � � < 1 is the eccentricity of the ellipses, and the
pressure is p0 �

1
4!

2�1� �2��x2 � y2�. Equation (8) with
S � L is analytically solvable:

k�	sin�cos�t
��������������
1��2

q
�;�sin�sin�t

��������������
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q
�;cos�
T; (14)

where �2��1���=�1��� and � is the polar angle that k
makes with the axis of rotation. In summary, we have a
three parameter problem in �, �, and �. Equation (9) has
the form da=dt�N �t�a, where the elements of the ma-
trix N �t� are periodic with period ��2�=

��������������
1��2

p
.

Therefore, the system can be analyzed numerically using
Floquet theory [11]. We compute the monodromy matrix
P , that is, the fundamental solution matrix with identity
initial condition evaluated at t��. Equation (9) will have
exponentially growing solutions if maxi jRe� i�j>1,
where  i;i�1;2;3 are the eigenvalues of P , with
124501-2
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corresponding Lyapunov-like growth rates given by
"� lnfmaxi jRe� i�jg=�: Thus, we can simulate numeri-
cally the solution to Eq. (9) over one period and indis-
putably determine the exponential growth rates. We can
be certain that at least one of the eigenvalues will always
be unity because of the incompressibility condition (4)
and that the remaining two eigenvalues appear as com-
plex conjugates on the unit circle or as real valued recip-
rocals of each other.

For flows with circular streamlines (� � 0), the mono-
dromy matrix can be analytically computed. It follows
from Eq. (14) that jk�t�j � 1. Then, � is constant in time
(denoted by �0 � �2�2) and Eq. (9) has three linearly
independent solutions:

a1�t� � cos	#�t� �$
k?1 � sin	#�t� �$
k?2; (15)

a2�t� � sin	#�t� �$
k?1 � cos	#�t� �$
k?2; (16)

a3�t� � êez; (17)

where #�t� � 2t cos�=�1� �0�, k?2 � 	sint;� cost; 0
T ,
and k?1 � 	cos� cost; cos� sint;� sin�
T are vectors
orthogonal to k, and $ is an arbitrary phase. Clearly
the first two solutions a1 and a2 satisfy Eq. (4). The
monodromy matrix can be constructed from these three
solutions:

P �

0
@ cos�#�2��� cos� sin�#�2��� 0

� sin�#�2���= cos� cos�#�2��� 0
tan�	1� cos�#�2���
 � sin� sin�#�2��� 1

1
A:

The three eigenvalues are  1;2 � exp�� i#�2���,  3 � 1.
All of the eigenvalues lie on the unit circle, from which it
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follows that all solutions in the inviscid case for � � 0 are
stable. The values of cos� for which j ij � 1, i � 1; 2; 3
are called ‘‘critically stable’’ and are given by #�2�� �
n�, n � 0;�1;�2; . . . , corresponding to cos� �
n�1� �0�=4. At these parameter values an exponentially
growing solution can appear (together with an exponen-
tially decaying one) as � increases from zero. Since
�0 � 0, the only values of interest are n � 0;�1;
�2;�3, and, for the case � � 0, n � �4. Bayly [3]
argues that the evenness of ~PPk as a function of k implies
that the eigenvalues, if real and unequal, must be positive.
This dismisses the n � �1 and n � �3 choices. The
cases n � 0 and n � �4 preserve the two-dimensional
structure of the base flow and thus should be stable under
small perturbations in the eccentricity. The remaining
value, cos� � �1� �0�=2, is the critical parameter value
at which a�t� suffers exponential growth as � increases
from zero. We conclude that introducing � preserves the
existence of elliptic instability, though it shifts the angles
at which elliptic instability arises to cos� � �1� �0�=2.
In addition, for �0 > 1, the LANS-� model stabilizes
Bayly’s elliptic instability.

Additional understanding of this result emerges by
following the analysis of Waleffe [12] and Kerswell [4].
By taking the dot product of Eq. (9) with a �
	a1; a2; a3


T , we obtain (for all �)

d�12 jaj
2�

dt
� �2�a1a2 �

4��
1� �

k1k2
jkj2

jaj2: (18)

One can determine an exponential growth rate to leading
order in � by inserting the zeroth order solutions for k and
a into the right hand side of this equation:
"�
1

jaj2
d�12 jaj

2�

dt

��
�
4
f�1� cos��2 sin	2�#� �$�
� �1� cos��2 sin	2�#� �$�
� 2�1� cos2�� sin�2t�g�

2��0

1��0
sin2� sin�2t�; (19)
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FIG. 1. The growth rate " maximized over cos� for E! � 0
and several values of �0 � �2�2. The solid lines are, from
bottom to top, �0 � 0; 0:1; 0:25; 0:5; 1. The maximum growth
rate is bounded by Eq. (20). The dashed lines, from top to
bottom, are �0 � 1:25; 2:5; 5:0; 12:5. Notice that for �0 > 1, a
stable band of nonzero eccentricities appears.
where #� � #�t� � t. Upon averaging over a period of a,
this quantity will vanish except when #� � 0, corre-
sponding to cos� � ��1� �0�=2. The maximum values
for " will occur at $ � ��=4 for #� � 0, respectively,
with growth rate

" �
�3� �0�

2

16
��O��2�; (20)

valid for �0 � 1. Thus, we see that the angle of critical
stability is again cos� � ��1� �0�=2. Furthermore, we
see that the maximum growth rate increases as a function
of �0 due to the �0 dependence of the critical stability
point up to a maximum of" � � at �0 � 1, after which a
set of stable solutions emerges in a band of nonzero
eccentricities. See Fig. 1.

For nonzero values of �, we must investigate the system
numerically. We use the variable coefficient ordinary
differential equation solver DVODE [13]. Figure 2 shows
the evolution of the critical instability surface as a func-
tion of �2�2. For �2�2 � 1, there is little change in the
124501-3



FIG. 2. Surface of " � 0:01 for E! � 0. The horizontal plane
is the �-cos� plane and the vertical axis is �2�2. (a) The
neutral surface for 0 � �2�2 � 1 and is an expansion of the
boxed region in (b). For � � 0, the critical stability point
occurs at � � �=3, which agrees with the classical results.
The critical stability point shifts towards cos� � 1 as �2�2

increases according to cos� � �1� �2�2�=2. As �2�2 exceeds
unity, a stable band of rotating flows with nonzero eccentrici-
ties appears.
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critical instability surface as predicted by Eq. (11). For
�2�2 > 0, all angles of incidence for the traveling wave
are unstable in a neighborhood of � � 1. The maximum
growth rate in the �-cos� plane increases as a function of
�2�2 and shifts to the corner � � 1, cos� � 1 by�2�2 �
0:1. When �2�2 exceeds unity, the flow stabilizes. For a
given set of parameters ��; cos��, one of the following
three situations will occur as shown in Fig. 2: the flow is
stable for all �2�2; the flow is unstable for 0 � �2�2 <
�2
1�

2
1 and stable for�2�2 � �2

1�
2
1; or the flow is stable for

0 � �2�2 � �2
2�

2
2, unstable for �2

2�
2
2 <�2�2 <�2

1�
2
1,

and stable again for �2�2 � �2
1�

2
1.

Thus, the LANS-� turbulence model enhances the
growth rates of the elliptic instability for long waves
with�2�2 < 1 while it shifts the angle of critical stability
124501-4
along the cusp rising diagonally in Fig. 2. It also stabil-
izes the elliptic instability for short waves with �2�2 > 1
as seen in Fig. 2(b). Finally, for any �2�2 � 0, this tur-
bulence model modifies the region in ��; cos�� parameter
space where the elliptic instability occurs, as also shown
in Fig. 2.

In this paper, we have shown that the CC family of
superposed solutions is preserved by the LANS-� model.
This enables us to determine the effects of the turbulence
correlation length in this model on the classic elliptic
instability. The correlation length sets the scale that
makes the instability become wave-number dependent.
The neutral stability surface as a function of �2�2 has
been determined and discussed in Fig. 2. As a function of
�2�2, the turbulence correlation length can either en-
hance or suppress elliptic instability as well as shift the
incidence angle � at which it first occurs.

The authors are indebted to A. Lifschitz-Lipton for
stimulating our original interest in CC solutions and
to the Center for Scientific Computing at Southern
Methodist University. The authors thank the referees for
insightful comments which aided in the presentation.
Furthermore, BF thanks the Theoretical Division at the
Los Alamos National Laboratory for their hospitality.
[1] Lord Kelvin, Philos. Mag. 24, 188 (1887).
[2] A. D. D. Craik and W. O. Criminale, Proc. R. Soc.

London A 406, 13 (1986).
[3] B. J. Bayly, Phys. Rev. Lett. 57, 2160 (1986).
[4] R. R. Kerswell, Annu. Rev. Fluid Mech. 34, 83 (2002).
[5] S.Y. Chen, C. Foias, D. D. Holm, E. J. Olson, E. S. Titi,

and S. Wynne, Phys. Rev. Lett. 81, 5338 (1998); Physica
(Amsterdam) 133D, 49 (1999); Phys. Fluids 11, 2343
(1999).

[6] S.Y. Chen, D. D. Holm, L. G. Margolin, and R. Zhang,
Physica (Amsterdam) 133D, 66 (1999).

[7] D. D. Holm, J. E. Marsden, and T. S. Ratiu, Adv. Math.
137, 1 (1998); Phys. Rev. Lett. 80, 4173 (1998).

[8] C. Foias, D. D. Holm, and E. S. Titi, Physica
(Amsterdam) 152-153D, 505 (2001).

[9] J. E. Marsden and S. Shkoller, Philos. Trans. R. Soc.
London A 359, 1449 (2001); C. Foias, D. D. Holm, and
E. S. Titi, J. Dyn. Differ. Equ. 14, 1 (2002); D. D. Holm,
J. Fluid Mech. 467, 205 (2002).

[10] J. E. Dunn and R. L. Fosdick, Arch. Ration. Mech. Anal.
56, 191 (1974); R. Larson, Rheol. Acta 31, 213 (1992).

[11] V. A. Yakubovich and V. M. Starzhinskii, Linear
Differential Equations with Periodic Coefficients
(Wiley, New York, 1967).

[12] F. Waleffe, Phys. Fluids A 2, 76 (1990).
[13] P. Brown, G. Byrne, and A. Hindmarsh, SIAM J. Sci.

Stat. Comput. 10, 1038 (1989).
124501-4


