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Experimental Observation of High-Order Quantum Accelerator Modes
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Using a freely falling cloud of cold cesium atoms periodically kicked by pulses from a vertical
standing wave of laser light, we present the first experimental observation of high-order quantum
accelerator modes. This confirms the recent prediction by Fishman, Guarneri, and Rebuzzini [Phys.
Rev. Lett. 89, 084101 (2002)]. We also show how these accelerator modes can be identified with the stable
regions of phase space in a classical-like chaotic system, despite their intrinsically quantum origin.
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The search for signatures of chaos and stability in
quantum systems whose classical analogs exhibit chaotic
dynamics is an area of intense current theoretical and
experimental interest [1]. The motivation is twofold. First,
the study of how complex classical behavior originates in
the quantum regime helps in understanding the opera-
tion of the quantum-classical correspondence principle
and thus the physical processes that are crucial in deter-
mining observed macroscopic behavior, particularly
when this behavior is chaotic. Second, the quantum dy-
namics of such systems are of considerable interest in
their own right, especially when the systems behave in a
peculiarly nonclassical manner.

Approaches to the classification of (chaotic) quantum
behavior have ranged from the highly mathematical (e.g.,
trace formulas [2]) through the statistical (energy spectra
[3]) to the more phenomenological (energy and momen-
tum transfer to ensembles of particles [4]). It is the last
approach which is most appealing as a philosophy to
guide experiment and underpins the work presented here.
Resonant, stable behavior in quantum systems often de-
pends on precise fulfillment of matching conditions be-
tween, e.g., periodic forcing of a system and its own
natural frequency, in contrast to the looser matching gen-
erally required in the corresponding classically chaotic
system [5]. The quantum resonances [6] observed in the
6-kicked rotor [7,8] represent an excellent example of this
quantum-classical dichotomy. These resonances are char-
acterized by the steady transfer of momentum to the
system, which in the atom-optical case [9,10] manifests
itself as a symmetric broadening of the atomic momen-
tum distribution for special values of the driving fre-
quency of the potential. Addition of a static linear
potential, e.g., due to gravity, realizes the o-kicked accel-
erator. The classical dynamics of this system are qualita-
tively similar to those of the o&-kicked rotor, but the
quantum dynamics are quite distinct. This is exemplified
by very different quantum resonant behavior, producing
quantum accelerator modes (QAM), at values of the
driving frequency close to (but not at) those for which
quantum resonances occur in the &-kicked rotor. QAM
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are characterized by the asymmetric transfer of a fixed
momentum impulse per kick to ~20% of the initial
ensemble of laser-cooled atoms [11-14]. This resonant
behavior was analyzed theoretically by Fishman,
Guarneri, and Rebuzzini (FGR) [5], which led to the
prediction of the existence of whole families of higher-
order QAM.

In this Letter, we report the first experimental obser-
vation of these high-order QAM, finding excellent quan-
titative agreement with the analysis of Ref. [S]. This is
achieved using an atom-optical realization [8-10,15] of
the quantum J&-kicked accelerator [11-14]. Pulses from a
vertical standing wave of laser light are applied to freely
falling laser-cooled atoms. The Hamiltonian is

[\

A =Lt gt — hp [1 + cos(G2)] S 8t — nT). (1)
m n

Here 2 is the position, p is the momentum, m is the
particle mass, g is the gravitational acceleration, ¢ is the
time, T is the pulse period, G = 27/ Ay, Where Ay, is
the spatial period of the potential applied to the atoms,
and ¢, quantifies the depth of this potential. The kick-
ing potential acts on the atoms as a phase grating that
induces a phase modulation of amplitude ¢, to their
de Broglie waves. Hence, the effect of a pulse on a plane
wave is to cause diffraction into a series of momentum
states separated by the grating recoil G. Between con-
secutive pulses these states accumulate a phase related to
their kinetic energy. This phase evolution is determined
by the value of 7, which therefore governs the type of
dynamics exhibited by the system. As in Refs. [13,14], we
use scaled dynamical variables y = Gzand p = GTp/m.
This defines an effective scaled, dimensionless Planck
constant k = —i[}, p] = AG>T/m, which together with
¢, and y = gGT? (accounting for the effect of gravity)
fully describes the quantum dynamics of the &-kicked
accelerator. When quantum resonances occur in the
6-kicked rotor (y = 0), the phase difference accumulated
between momentum states separated by /iG from one
pulse to the next is equal to an integer multiple of 27r.
For a state of zero initial momentum, this is the case for
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values of T corresponding to k = 477€, where £ € Z.This
rephasing is analogous to the Talbot effect in optics [16],
and so we speak of these resonances as occurring at
integer multiples of the Talbot time Ty = 47rm/hG>
[12]. For a continuous initial distribution of momenta,
such as in a cold atomic ensemble, resonant behavior is
observed for ¥ = 27€, i.e., at integer multiples of the
half-Talbot time 7'/, [9,10,13]. Close to these values of
T, QAM are found in the &-kicked accelerator [13].

In our realization of the quantum &-kicked accelerator,
~107 cesium atoms are trapped and cooled in a magneto-
optic trap to ~5 pK, yielding a Gaussian momentum dis-
tribution with FWHM 6/G. The atoms are then released
from optical molasses and, falling freely under gravity,
are exposed to pulses from a vertical standing wave of
laser light 20 GHz red-detuned from the 6°S,, —
6°P, ), (F =4 — F'=3) DI transition. Hence, Ay =
447 nm and T/, = 66.7 us. The intensity of the light is
approximately 1 X 10* mW/cm?, and the duration of
each pulse is 7, = 500 ns. Through the action of the ac
Stark shift, these pulses result in §-function-like applica-
tions of a sinusoidal potential to the atoms, with ¢, =
0%1,/868. Here ) is the Rabi frequency, and &, is the
detuning. Both the trapped atom density distribution and
the standing light wave intensity profile are Gaussian,
with FWHM of 1 mm. The resulting mean value of ¢, is
~0.87. After application of the diffracting pulses, the
atoms fall through a sheet of light resonant with the
62Sl/2 — 62P3/2, (F = 4 — F" = 5)D2transition, 0.5 m
below the point of release, and their momentum distri-
bution is measured by a time-of-flight technique with a
resolution of ~/AG. For more details, see Refs. [12-14].

The approach used by FGR [5] accounts for the
observed acceleration of atoms participating in a QAM
using trajectories in a map for a classical point particle.
The validity of this map can be justified asymptotically
by € = (k — 27€) — 0 (not & — 0, hence the description
pseudoclassical) or, equivalently, by (¢ —T/T,;)—0.
In an appropriately transformed frame [5], the map is [14]

Pni1 = Pn— ksin(x,) — sgn(e)y, )

Xn+1 = Xn + Sgn(£)ﬁn+h (3)

where p = pe/k, and k = ¢ ,|€|. Iteration of Egs. (2) and
(3) reveals systems of accelerator orbits. These are stable
fixed points centered on islands in the pseudoclassical
phase space. To yield an observable QAM, an island
system must be sufficiently large, in terms of total
phase-space area. Furthermore, the islands must be large,
or at least comparable to |e| (which takes the place of 7 as
a measure of the size of a minimal ‘“quantum phase-
space’ cell) for a point-particle-like description of the
QAM dynamics to be appropriate. We show that when
these requirements are satisfied the momentum gain pre-
dicted by the analysis of FGR agrees very well with
experiment, even when %k is not extremely close to a
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resonant value. This can be understood as being due to
the relevant dynamics taking place in stable regions of
the pseudoclassical phase space, where semiclassical
analyses can generally be expected to work reasonably
well [17].

FGR [5] classify accelerator orbits (and thus QAM) by
the order p of the fixed point (i.e., how many pulse
periods it takes before cycling back to the initial point
in the reduced phase-space cell) and the jumping index j
(related to how many units of the momentum period of
phase space are imparted per cycle). Particles in a (p, j)
mode with initial momentum ¢,/4G have, after N kicks,
momentum (in units of ZG)

J 4
~ gy + Ly -
q q0 |€ — T/T1/2| |:p Sgll(€ T/TI/Z) 2 i|’ (4)

in a frame accelerating with gravity. Only atoms of cer-
tain initial momenta will be accelerated [5,12]. As our
initial atomic ensemble extends over many phase-space
cells, all such conditions can be satisfied. Atoms fulfilling
these conditions will receive the same momentum trans-
fer, independent of the value of ¢,. Only the efficiency of
populating a QAM varies with ¢, [12], and in our ex-
perimental arrangement the mean value of ¢, experi-
enced by the atoms is sufficiently large (0.87) to ensure
an observable population in a large number of QAM.
Since the mean initial momentum is O, the central mo-
mentum of the observed QAM is well described by Eq. (4)
with gg = 0.

To search for high-order QAM, we measured the mo-
mentum distribution after a fixed number of pulses for
a range of T near the first three integer multiples of 7' ;.
Figure 1 displays the momentum distributions after
30 pulses for values of T in the region of (a) T/, (T =
60.5 to 74.5 us), (b) Tt = 2T, (124.5 to 142.5 us), and
(c) 3Ty, (191.5 t0 209.5 ws). The dotted curves indicate
the theoretical predictions of Eq. (4). There is some dis-
agreement for very large momenta, particularly large
negative momenta. At these momenta, the atoms have
left the Raman-Nath regime [13], moving so quickly
that they travel a significant fraction of the standing
wave period Ay, during a pulse, and experience a spa-
tially averaged potential. Such an effect will be stronger
for atoms accelerated in the negative direction (with
gravity) than in the positive (against gravity).

Certain of the more slowly accelerating (higher-order)
QAM can be resolved only after applying a larger num-
ber of pulses than used in Fig. 1. To observe the emergence
of several such modes, the value of T was scanned, for
larger pulse numbers, in the region of 7. Figure 2 shows
the experimental momentum distributions after (a) 60,
(b) 90, (c) 120, and (d) 150 pulses. Overlaid dotted lines
indicate the predictions of Eq. (4). In Fig. 2(a) we can now
identify the (13, —5) and (23,9) modes. After 90 kicks
[Fig. 2(b)] the (18, —7) QAM is emerging, whereas the
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momenta of the (2, 1) and the (5, —2) modes have grown
beyond the measurable range. In Figs. 2(c) and 2(d) the
atoms have received yet more momentum, and the (3, —1)
mode is no longer visible. Note that some of the QAM
seem to ‘‘fade’ and become diffuse with time; this effect
is not predicted by the pseudoclassical model and may be
due to tunneling [5].

We now explicitly connect the observed high-order
QAM around T, as displayed in Figs. 1(b) and 2, with
their corresponding island systems in pseudoclassical
phase space. Figure 3 shows stroboscopic phase-space
plots, generated by repeated iterations of Egs. (2) and
(3), for different values of T around 7. Comparing
Figs. 2 and 3, we see that the appearance and disappear-
ance of the QAM and of the stable island systems as T is
varied coincide. The islands are robust to small variations
in ¢, [14], meaning that the plotted phase spaces (corre-
sponding to the mean value of ¢; = 0.87) give a reliable
indication of which QAM will be observable, even though
¢, experimentally takes a range of values. Figure 3(a)
(T = 130.0 ws) shows the three large islands correspond-
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FIG. 1. Grey-scale plots of the variation with T of the exper-
imental momentum distribution after 30 pulses, in a frame
falling freely with gravity. The value of T is varied around
(@) Ty, (b) Ty = 2Ty, and (c) 3T, in steps of 0.128 us.
Dotted lines indicate the predicted momenta [Eq. (4)] of
selected QAM, labeled (p, j). Population arbitrarily normal-
ized to maximum value = 1.
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ing to the (3, —1) QAM. In Fig. 3(b) it is possible to
observe the coexistence of a (5, —2) and a (8, —3) island
system at 7 = 132.2 us, which can be seen to be consis-
tent with the experimental results in Figs. 1(b) and 2(a).
Interestingly, these yield simultaneous momentum trans-
fer in opposite directions, promising application as a
beam-splitting technique. Figure 3(c) (T = 132.8 us)
shows the emergence of a (13, —5) accelerator orbit,
while in Fig. 3(d) we see a complex (23, 9) island system
at T = 133.5 us (just greater than T7). This nevertheless
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FIG. 2. Experimental momentum distributions for different
pulse numbers as 7T is varied in the vicinity of T, from 124.5 to
142.5 ws in steps of 0.128 us. The pulse number is (a) 60,
(b) 90, (c) 120, and (d) 150. Dotted lines indicate the predicted
momenta [Eq. (4)] of selected QAM, labeled (p, j). Population
arbitrarily normalized to maximum value in subplot (a) = 1.
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FIG. 3. Phase space plots produced by Eqgs. (2) and (3) for T
close to Tr. The islands correspond to the following QAM:
(&) T=130.0pus, and (p,j)= 3, —1); (b) T=132.2 us,
(p, j) = (5, —2) (shorter, rounder islands) and (8, —3) (thin,
elongated islands); (c) T =1328 us, (p,j)= (13, —5);
(d) T=1335us, (p,j)=23,9); () T=1342 us, (p,j) =
(5,2); and (f) T=139.4 us, (p,j) = (2,1). Initial conditions
are clustered around the fixed points corresponding to accel-
erator orbits to highlight the structure of the island system of
interest.

corresponds to a fairly robust QAM that is clearly visible
in each of the subplots of Fig. 2. Moving further away
from Tr, in Figs. 3(e) and 3(f) (T = 134.2 and 139.4 us,
respectively), we again observe comparatively simple
(5,2) and (2, 1) orbits.

In conclusion, we have successfully observed a multi-
tude of quantum accelerator modes of up to 23rd order and
connected them to the periodic orbits of a classical map.
This was derived by FGR [5] as a pseudoclassical limit of
the underlying quantum dynamics when the pulse period
approaches certain resonance times. Linking this theory
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with our experiment, we have successfully performed
quantum accelerator mode spectroscopy. Confirmation
of the validity of such a theoretical approach promises
new avenues for investigation of quantum-classical cor-
respondence in a chaotic context. Furthermore, the effi-
cient momentum transfer occurring in these atomic
dynamics is of great intrinsic interest. We have recently
demonstrated quantum accelerator modes to be formed
coherently [14], and the simultaneous existence of quan-
tum accelerator modes in opposite momentum directions
could be applied as a beam splitter for large-area atom
interferometry [18].
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