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Light Sheets and Bekenstein’s Entropy Bound
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From the covariant bound on the entropy of partial light sheets, we derive a version of Bekenstein’s
bound: S=M � �x= �h, where S, M, and x are the entropy, total mass, and width of any isolated, weakly
gravitating system. Because x can be measured along any spatial direction, the bound becomes
unexpectedly tight in thin systems. Our result completes the identification of older entropy bounds
as special cases of the covariant bound. Thus, light sheets exhibit a connection between information and
geometry far more general, but in no respect weaker, than that initially revealed by black hole
thermodynamics.
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the phenomenology of our present models, it cannot be
derived from known principles. It may be interpreted as

stant and the speed of light to 1.) The entropy S refers to
the total entropy of all matter systems that are ‘‘seen’’ by
Entropy bounds have undergone a remarkable trans-
formation from a corollary to a candidate for a first
principle [1]. After proposing the generalized second
law of thermodynamics (GSL) [2,3]—that the sum of
black hole entropy and ordinary matter entropy never
decreases—Bekenstein argued that its validity necessi-
tates a model-independent bound [4,5] on the entropy S of
weakly gravitating systems:

S � �Md= �h; (1)

where M is the total gravitating energy, and d is the linear
size of the system, defined to be the diameter of the
smallest sphere that fits around the system. This inequal-
ity is obtained by considering the classical absorption of
the system by a large black hole; it does not depend on the
dimension of spacetime [6]. Bekenstein’s bound is re-
markably tight (consider, for example, a massive particle
in a box the size of its Compton wavelength). It has
appeared in discussions ranging from information tech-
nology to quantum gravity. Since M � d=4G for a
weakly gravitating system, it also implies the ‘‘spherical
entropy bound,’’

S � Acs=4G �h: (2)

Here Acs is the area of the circumscribing sphere.
Though confined to weak gravity, ’t Hooft [7] and Suss-

kind [8] ascribed fundamental significance to Eq. (2),
claiming that it reflects a nonextensivity of the number
of degrees of freedom in nature. This eventually
prompted the conjecture of a more general bound, the
covariant entropy bound [9]. Empirically, this bound has
been found to hold in large classes of examples, including
systems in which gravity is the dominant force.
Meanwhile, no violation has been observed, nor have
any theoretical counterexamples been constructed from
a realistic effective theory of matter and gravitation.

Although the covariant bound does not conflict with
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an unexplained pattern in nature, betraying a fundamen-
tal relation between information and spacetime geometry.
Then the bound must eventually be explained by a unified
theory of gravity, matter, and quantum mechanics. In the
mean time, it should be regarded as providing important
hints about such a theory.

We are thus motivated to consider the covariant en-
tropy bound primary and to try to derive other laws of
physics from it. As we will discuss shortly, the bound has
already been shown to imply the GSL, as well as older,
more specialized entropy bounds. However, the oldest
(and, for weakly gravitating systems, tightest) bound of
all, Bekenstein’s bound, is an exception. It has not pre-
viously been identified as a special case of the covariant
bound.

The main purpose of this note is to fill this gap. We will
use the covariant bound, in the stronger form of Ref. [10],
to derive an inequality of the type introduced by
Bekenstein, Eq. (1). Our result will be obtained directly,
without use of the GSL. Thus we circumvent the contin-
ued debate of whether Bekenstein’s bound is really neces-
sary for the GSL [11,12].

Let us briefly review the covariant bound and its logi-
cal relation to the GSL and to the spherical bound, Eq. (2).
Given any open or closed spatial surface B at a fixed
instant of time, one can always construct at least two
light sheets. A light sheet of B is a null hypersurface
generated by nonexpanding light rays (i.e., null geodesics)
which emanate from B orthogonally [9]. For example, for
a spherical surface in Minkowski space, the two light
sheets will be the two light cones ending on B.

The covariant entropy bound [9] claims that the en-
tropy S of the matter on any light sheet L of B is bounded
by the surface area A�B�:

S�L�B�� � A�B�=4G �h; (3)

where G is Newton’s constant. (We set Boltzmann’s con-
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FIG. 1 (color online). Matter system W, light sheet L, entry
surface ~BB
, and exit surface ~BB�. At first order in �g, the
bending of light leads to a small area difference between entry
and exit surfaces, which bounds the entropy of W.
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the light rays generating L (systems whose world volume
is fully intersected by L).

Let B be a complete cross section of the horizon of a
black hole. Then its past-directed ingoing light sheet
intersects with all the matter systems that collapsed to
form the black hole [10]. Moreover, A�B�=4G �h in this case
represents the Bekenstein-Hawking entropy of the black
hole. The bound thus guarantees that the black hole en-
tropy exceeds the matter entropy lost to an outside ob-
server. That is, the GSL is upheld when a black hole forms.

The GSL should also hold when a matter system falls
into an existing black hole. In that case it requires that the
black hole horizon area increases enough so that the
additional Bekenstein-Hawking entropy compensates
for the loss of matter entropy: S � �Ahorizon=4G �h. In
the form of Eq. (3), the covariant entropy bound does
not imply this relation. This prompted Flanagan, Marolf,
and Wald [10] to propose a stronger formulation, the
‘‘generalized’’ covariant entropy bound (GCEB),

S�L�B;B0�� �
A�B� � A0�B0�

4G �h
: (4)

Here A0 is the area of any cross-sectional surface B0 on the
light sheet L of B. S denotes the entropy of matter systems
found on the portion of L between B and B0 [13].

Put differently, in constructing L, we are at liberty to
follow each light ray until it intersects with neighboring
light rays. (At these caustic points the light rays begin to
diverge, and the nonexpansion condition becomes vio-
lated.) But nothing forces us to follow each light ray to
the bitter end. We may construct a partial light sheet by
terminating L before caustics are reached. Then the end-
points of the light rays will span a nonzero area A0. It is
natural to expect that the inequality (3) can be tightened
in this case, because we are not including in S all the
matter systems that could have been reached by the light
rays. Equation (4) improves the bound accordingly.

The GCEB does imply the GSL for all processes in-
volving black holes, including the absorption of a matter
system by an existing black hole [10]. It also, of course,
implies the weaker form of the covariant bound (3),
which in turn implies the spherical entropy bound (2) in
weakly gravitating regions [9].

To derive Bekenstein’s bound from the GCEB, we wish
to apply Eq. (4) to an isolated, weakly gravitating matter
system. The basic idea of our proof is to ‘‘x ray’’ the
system. Because matter bends light, initially parallel
geodesics will arrive on the ‘‘image plate’’ slightly con-
tracted. The resulting area difference, which bounds the
system’s entropy, will be expressed as the product of the
mass and the width of the system.

We make the following assumptions: (i) The stress
tensor Tab has support only in a spatially compact region,
the world volume W of the matter system. (ii) Gravity is
weak. Specifically: (ii.1) The metric is approximately
flat: gab 	 �ab 
 �gab, with �ab 	 diag��1; 1; 1; 1� and
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j�gabj � 1. (ii.2) Any part of the system is much smaller
than any (averaged) curvature scale it produces:
hRabcdi‘ � ‘�2, where hRabcdi‘ is the average Riemann
tensor along a distance ‘. It is believed that all physical
matter (at least when suitably averaged) satisfies the null
and causal energy conditions. These conditions may also
be needed for the validity of the GCEB, which however is
being assumed here in any case. To derive Bekenstein’s
bound we shall require only the null energy condition:
(iii) Tabk

akb � 0 for any null vector ka.
We begin with some definitions valid at zeroth order in

�g. Cartesian coordinates x� �� 	 0; . . . ; D� 1� cover
the spacetime. The corresponding vector fields @=@x�

define an orthonormal frame at every point, which we
take to be a rest frame of W for convenience. (The
remaining choice of spatial orientation will be exploited
later.) The curves

x0 	 x1; �x2; . . . ; xD�1� arbitrary constants; (5)

describe a set of parallel light rays traveling in the x1

direction (see Fig. 1). More precisely, they define a null
geodesic congruence L, with affine parameter x1 and
everywhere vanishing expansion. We will be interested
only in the intersection of the hypersurface L with the
world volume W of the matter system. Let ~BB
 �~BB�� be the
set of the first (last) points of each light ray in W. They
form �D� 2�-dimensional spatial surfaces characterized
by functions x1��x

2; . . . ; xD�1�, with a finite range for
�x2; . . . ; xD�1�. (Connectedness is not necessary for this
proof.) All spatial sections of a light sheet are surface
orthogonal to the generating light rays. Hence, L \W is a
partial light sheet with initial and final surfaces ~BB�. At
zeroth order they have equal area.

In the exact metric, we may use the same coordinates.
Generically, however, the hypersurface L as defined by
Eq. (5) will be neither null nor made of geodesics, nor is
there a sense of strictly nonpositive expansion. All of
these qualitative conditions must hold for L to be a light
sheet; otherwise the GCEB cannot be applied. Hence we
must adjust L slightly.We will define two light sheets, L�,
both of which limit to L as �g ! 0.
121302-2
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Consider the future- and W-directed light rays orthogo-
nal to ~BB
. Because gravity is weak, their expansion will
be very small (compared to the inverse width of W). But it
will not vanish exactly, and it need not be of definite sign.
However, ~BB
 is embedded with codimension 1 in the
boundary of W, @W. Thus there exists a small (non-
unique) deformation of ~BB
 within @W, the surface B
,
whose orthogonal null geodesics have initially vanishing
expansion to all orders [14]. Assumption (iii) ensures that
� will not increase away from ~BB
 [15], and (ii.2) excludes
the possibility that the light rays intersect within W [16].
Hence, the light rays generate a light sheet L
 that
captures all of the matter system. Let A
 be the area of
B
, and let A0


 be the area of the surface B0

 spanned by

the same light rays when they (last) leave the system W.
Similarly, ~BB� can be deformed to a surface B� of

exactly vanishing expansion. This defines a second,
slightly different light sheet L� with initial and final
areas A� and A0

�. The light sheets L� have opposite
directions of contraction, roughly �x1. We will be inter-
ested in the total change of the cross-sectional area as
each light sheet traverses W: �A
 � A
 � A0


 and
�A� � A� � A0

�.
Let S be the entropy of the matter system, i.e., the

logarithm of the number of independent quantum states
accessible to any system of total mass M occupying the
world volume W in a neighborhood of L�. As each light
sheet fully contains the matter system, the GCEB implies
that S � �A
=4G �h and also that S � �A�=4G �h.
Therefore,

S �
�A
 
�A�

8G �h
: (6)

To calculate �A� to leading order, we may continue
using �x2; . . . ; xD�1� to label the light rays in L�. We may
approximate the affine parameter along each ray by �x1

and the vector field tangent to the light rays by

� ka 	
�
@

@x0



@

@x1

�
a
: (7)

Let A� be the cross-sectional area spanned by the
light ray �x2; . . . ; xD�1� and its infinitesimally neighbor-
ing light rays in the light sheet L� at the (affine) position
x1. At each point on each of the two light sheets, the
expansion �� is given by the trace of the null extrinsic
curvature [1]. Equivalently, it is the logarithmic deriva-
tive of A� with respect to the affine parameter �x1:

���x
1; x2; . . . ; xD�1� 	 �

dA�=dx1

A�

: (8)

Raychaudhuri’s equation,

d�

d��x1�
	 �

1

2
�2� � �2

� � Rabkakb; (9)

describes how the expansion changes along a light ray.
Here Rab is the Ricci tensor. There is no twist term
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because the light sheets are surface orthogonal [15]. The
expansion and shear terms, �2 and �2, are of higher order
than the stress term and can be neglected. In this approxi-
mation one can integrate Eqs. (8) and (9) for each light
ray:

A
�x
1� 	 A
�x

1

� exp

Z x1

x1


dx̂x1�
�x̂x
1� (10)

	 A
�x
1

�

�
1�

Z x1

x1


dx̂x1
Z x̂x1

x1


d ^̂xx̂xx1Rabk
akb

�
: (11)

For x1 	 x1�, the curvature term yields the fractional
change in each area element dx2; . . . ; dxD�1. By assump-
tion (ii.2), this term will be small compared to unity. The
area change can be integrated to obtain

�A
 	 8�G
Z

dx2 � � � dxD�1
Z x1�

x1


dx̂x1
Z x̂x1

x1


d ^̂xx̂xx1Tabk
akb:

(12)

After adding the analogous expression for the light sheet
L�, the integrals factorize, and Eq. (6) becomes

S �
�
�h

Z
dx2 � � � dxD�1 �x1

Z x1�

x1


dx1Tabkakb: (13)

To continue the inequality, we replace the local width
of the system, �x1 � x1� � x1
, by its largest value over
�x2; . . . ; xD�1�, x. (For convex systems, x is the separation
of two planes orthogonal to x1, which ‘‘clamp’’ W; but
generally, it can be smaller than that.) This yields

S � �Pbk
bx= �h; (14)

where Pb �
R
dx1 � � � dxD�1Tabk

a. Note that Pb is a cor-
rectly normalized integral of the conserved tensor Tab
over a null hypersurface [see Eq. (7) and, e.g., Appen-
dix B.2 in Ref. [15]]. Since Tab vanishes outside W, the
hypersurface of integration can be extended to spatial
infinity without affecting the value of Pb. Hence the
time component of Pb is the total energy, and the (nega-
tive) spatial components are the Arnowitt-Deser-Misner
momenta. In a rest frame, the momenta vanish by defi-
nition, and P0 is equal to the system’s total (‘‘rest’’) mass
M. We thus obtain a ‘‘generalized Bekenstein bound,’’

S � �Mx= �h: (15)

Our result is somewhat stronger than the original
Bekenstein bound, Eq. (1), because of our definition of
the relevant length scale, x. Bekenstein advocated using
the largest scale of the system, the circumferential diam-
eter d. Our argument, however, allows us to use the
smallest dimension. For example, if the system is rectan-
gular with sides of length a < b < c, we are free to align
the x1 axis with the shortest edge, so that x 	 a. For more
general shapes, the strength of Eq. (15) is optimized as
follows. Find the greatest width of the system, x���, for
every orientation � of the system relative to the x1 axis;
then choose the particular orientation �min that yields the
121302-3
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smallest such greatest width, x��min�. If the shape of the
system is time dependent, then x can be minimized not
only by judicious rotations, but also by time translations
of W relative to L [17]. Independently of the shape of the
system, x � d for all �, and, in particular, for �min.
Hence Eq. (15) implies Eq. (1). For systems with highly
unequal dimensions, such as a very thin box, x � d.
In this case Eq. (15) is much stronger than Eq. (1).

The assumptions we stated earlier characterize the
regime in which the generalized Bekenstein bound can
be applied. Our construction will not go through unless
the system is compact and isolated, so that initial and
final surfaces of a suitable light sheet can be constructed.
The weakness of gravity ensures that the light sheet area
decrease is small and that it is given by the product of
a (well-defined) width and mass.

Thus, our derivation does not give licence to all inter-
pretations the Bekenstein bound has received. For exam-
ple, we do not find support for its application to a closed
universe. Let S be the entropy of the quantum fields on a
spatial three sphere of diameter d at total energy M.
(These quantities are well defined in the absence of
gravity, G 	 0.) In this case the system occupies a geome-
try which is intrinsically curved. Unlike an isolated
system in flat space, it cannot be fully covered by a partial
light sheet. Hence, the covariant bound does not imply
Bekenstein’s bound in this case. Indeed, violations of
Eq. (1) were found for supersymmetric conformal field
theories on spatial spheres of various dimensions [18].

There is no evidence that the original Bekenstein
bound is violated by any complete, isolated, weakly grav-
itating system that can actually be constructed in nature
[12,19]. It also appears to be reasonably tight, in that
realistic matter can come within an order of magnitude
of saturating the bound [5]. But the generalized Beken-
stein bound faces challenges to which the original was
immune. Testing Eq. (15) is important both in its own
right and as a simple check of the GCEB that obviates the
computation of geodesics. Detailed examples will be
presented elsewhere.

We close on a speculative note. Gravity plays a central
role in our derivation of Bekenstein’s bound.We combined
the GCEB, a conjecture involving the Planck area G �h,
with classical equations involving G. But in due course G
dropped out, leaving only �h in the final result. Indeed,
Bekenstein’s bound can be tested entirely within quantum
field theory, apparently without any use of the laws of
gravity [5]. This remarkable fact suggests a novel per-
spective on the connection between gravity and quantum
mechanics. Note that for systems with small numbers of
quanta (S � 1), Bekenstein’s bound can be seen to require
nonvanishing commutators between conjugate variables,
as they prevent Mx from becoming much smaller than �h.
One is tempted to propose that at least one of the prin-
ciples of quantum mechanics implicitly used in any veri-
121302-4
fication of Bekenstein’s bound will ultimately be recog-
nized as a consequence of Bekenstein’s bound and thus of
the covariant entropy bound and of the holographic rela-
tion it establishes between information and geometry.
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