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Cortical neurons in vivo show fluctuations in their membrane potential of the order of several milli-
volts. Using simple and biophysically realistic models of a single neuron we demonstrate that noise
induced fluctuations can be used to adaptively optimize the sensitivity of the neuron’s output to
ensembles of subthreshold inputs of different average strengths. Optimal information transfer is
achieved by changing the strength of the noise such that the neuron’s average firing rate remains
constant. Adaptation is fast, because only crude estimates of the output rate are required at any time.
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input spikes are generated by a Poisson process, and we
describe the spike input by an instantaneous rate �s (for

In order to quantify information transmission in single
neurons, Stemmler introduced a simple expression for a
Neurons often behave as threshold elements, which
transmit information only when their membrane poten-
tial— driven by their inputs— crosses a certain threshold
value. Input signals, which are too weak to sufficiently
increase the membrane potential, are lost. One way to
amplify weak inputs, however, is to add noise with a
proper variance to the signal: Fluctuations of the mem-
brane potential may lead to threshold crossings and to
output spikes. Any modulation of the otherwise sub-
threshold input signals then leads to a modulation of
the probability of generating these spikes and can be
observed as a change in the neuron’s output rate. If the
fluctuations are too strong, signal transmission deterio-
rates. This phenomenon is called stochastic resonance
(SR) (see [1] for a review). Stochastic resonance has
been demonstrated in the context of neural systems
[1–8], and there is a lively discussion in the current
literature about its potential use (see, e.g., [5–7]). One
basic cornerstone of an understanding of the role of SR in
neural systems is the problem of adjusting the optimal
level of noise. Is there a simple way for a single neuron
to calculate the proper noise level for a given ensemble
of input signals, and would it be feasible for a neuron to
adjust the noise level if the input is changing? Using an
abstract as well as a biophysically realistic neuron model
we show that as long as the variance of the noise remains
optimally adapted to the average strength of the inputs,
the neuron’s average output rate is approximately constant
and independent of the ensemble of input signals. This
suggests a simple adaptation principle for the neuron to
properly adjust the variance of the noise: The synaptic
conductances of the noise inputs are strengthened if the
neuron’s average firing rate is below its target value and
weakened otherwise. Activity dependent weight regula-
tion of this kind has been advanced in various theoretical
and experimental studies [9–12].

Let us begin with the investigation of an abstract, but
generic, model of a single neuron. We assume that all
0031-9007=03=90(12)=120602(4)$20.00
the signal inputs) or �n (for the noise inputs). The rate �s
is supposed to be low, so that the average membrane
potential of the neuron remains subthreshold. The signal
is ‘‘amplified’’ by the noise inputs which are assumed to
be balanced; i.e., they consist of inhibitory and excitatory
inputs with equal strength on average (for a more detailed
discussion of balanced inputs to neurons see, e.g., [13]).

Signal and noise inputs are coupled to this model
neuron via total synaptic weights ws (signal) and wn
(noise). If the total rate of incoming spikes is large and
the individual weights are small, the dynamics of the
membrane potential is then given by an Ornstein-
Uhlenbeck process with drift

� � ws�s; (1)

diffusion

�2 � w2n�n �because w2s�s � w2n�n� (2)

(see [14]), and an upper absorbing boundary. Below the
boundary, the evolution of the membrane potential V is
governed by

dV�t� �
�
�
V
�
��

�
dt� �dW�t�; V�0� � 0; (3)

where � is the time constant and dW is the infinitesimal
increment of the Wiener process. Once the membrane
potential reaches a given value , the event is called a
spike and the voltage is reset to V0 � 0. A signal input �
is subthreshold if �� <  and suprathreshold otherwise.
The output rate, f�spikess �, of the Ornstein-Uhlenbeck neu-
ron can be calculated using the expression

1

f
� �

Z 1

0
due�u

2 e�2yu� � e�2yru�

u
; (4)

where y � �����=
���������
�2�

p
, yr � �V0 ����=

���������
�2�

p
(see

[15]). Figure 1(a) shows the frequency-current (f-I) curve
according to Eq. (4).
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FIG. 1. (a) Output rate f �Hz� as a function of the input �
(f-I curve) for increasing values of � � 0:0; 0:1; 0:2; 0:3;
0:4; 0:5; 0:6. � and � are given in units of �

 and
���
�

p
=,

respectively. Solid lines: f-I curves according to Eq. (4).
Dashed lines: f-I curves including signal dependent noise,
�2 � w2s�s � w2n�n � ws�� w2n�n with ws � 0:02, as in
[20]. � � 1 corresponds to the threshold, � � 20 ms,  �
30 mV. (b) Solid line: Optimal output rate f vs �. For each
�, � is adjusted such that J, Eq. (5), is maximal. Dashed line: f
as a function of � with � adjusted such that J equals 95% of
the maximum possible value for each �. Parameters as in (a),
T � 200 ms.
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lower bound J on the Fisher information [16]. The Fisher
information quantifies how well parameters of a data
generating model can be inferred from the data (for an
introduction, see, e.g., Ref. [17]). In spite of its being an
approximation, it is shown numerically in [16] that the
optimal noise level calculated from

J��� �
4T������������
��3��

p �����3

�5
e�����

2=�2� (5)

deviates only negligibly from the one that would have
resulted from the use of the mutual information [18,19]
between the (Gaussian) spike count distribution and
the distribution of small deviations from �, for all sub-
threshold �. This property allows us to cover the whole
parameter regime of interest, using only the simple ex-
pression Eq. (5), without the need to calculate the second
moment of the first-passage-time density near the thresh-
old for low noise, which is notoriously difficult (see, e.g.,
comments in [20]).

Figure 1(b), solid line, displays the output rate f vs �
using a noise level which maximizes J, Eq. (5), for every
�. The dashed lines correspond to output rates which
belong to noise levels such that J � 0:95Jmax. Note that
the output rate at the optimal noise level is almost a
constant with respect to changing signal intensity.
Because of the broad maximum of J, performance is
only slightly degraded in case of a suboptimally chosen
output rate.

It is far from trivial whether the above demonstrated
property of the abstract single neuron model carries over
to real neurons. In order to provide stronger evidence we
employ an electric circuit model of a neuron, a so-called
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Hodgkin-Huxley–type model, where we now use con-
ductance rather than current noise, which is biologically
more realistic. Models of this kind are highly successful
in describing experimental data (for an introduction
see [21]).

The dynamics of the membrane potential V is given by

Cm
dV
dt

� �Ileak � INa � IKd � IM � Isyn � Iapp: (6)

The left-hand side of the equation describes the influence
of the membrane’s capacitance, while all ionic currents
through the cell’s membrane are summed on the right-
hand side. INa and IKd are the sodium and potassium
currents through the membrane, which are responsible
for the neuron’s ability to produce a spike. IM is a potas-
sium current typical for cortical pyramidal cells and Ileak
summarizes all other (unspecific) currents through the
membrane. Any incoming spike also causes a change in
the conductance of the neuron’s membrane. This causes
currents flowing through the membrane, which are sum-
marized in the total synaptic current Isyn. Iapp, finally is
the applied signal current.
Isyn is responsible for the noise input,

Isyn � ge�t��V � Ee� � gi�t��V � Ei�: (7)

It is mediated by time dependent excitatory [ge�t�] and
inhibitory [gi�t�] conductances which change as a result
of the incoming spikes. Ee and Ei are the reversal poten-
tials of the excitatory and inhibitory synapses. The effect
of the incoming spikes of the noise inputs is not modeled
in detail, but effectively described by an Ornstein-
Uhlenbeck process, as in [22],

dge;i�t� � �
1

�e;i
�ge;i�t� � �gge;i�t��dt� �e;idW; (8)

where �gge;i are average conductances, �e;i are time con-
stants, and dW is the infinitesimal increment of the
Wiener process. Parameters are given in the Appendix.
They were chosen to match basic properties of cortical
pyramidal cells; see [22].

In this more realistic model the notion of balanced
input is not as straightforward as in the abstract model.
Balance requires excitation and inhibition to be the same
on average. According to Eq. (7), this is possible only for a
fixed voltage V. For any other average membrane poten-
tial the input is not totally, but partly balanced. For the
given neuron model balance would be achieved at the
voltage threshold at �ggi= �gge � 2:4. In the following, how-
ever, we choose a ratio of �ggi= �gge � 3:1, which corresponds
to balanced conditions for 3:5 mV below threshold and is
a realistic value in the sense that the membrane potential
of cortical pyramidal cells is often seen close below the
threshold; see [23]. Figure 2(a) displays the frequency-
current curve for the above choice of parameters for
different noise conditions.
120602-2
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FIG. 3. Demonstration of adapting the noise level. There are
three distinct time scales: Fast membrane potential fluctuations
according to Eq. (8), ‘‘signal’’ inputs changing every 50 ms,
such that many ‘‘signals’’ correspond to deviations from the
same mean, and adaptation of the noise level on the slowest
time scale. (a) Brief ‘‘signal’’ current injections, Iapp, of dura-
tion 50 ms, randomly drawn from normal distributions with
mean 0.25, 0.35, 0.1 nA (left to right) and variance 0:0005 nA2,
one every 50 ms. (b) Example of a voltage trace of the
Hodgkin-Huxley model, Eq. (6), as a consequence of current
injections and adaptation. (c) Estimated output rate fest, based
on a 500 ms average of the recent past; fest is evaluated every
25 ms. Thick line: mean over 10 independent runs; thin lines:
corresponding standard deviations; straight lines: fopt � 4 Hz.
(d) Noise amplification ! (see caption of Fig. 2), according to
Eq. (10), with " � 0:007. The update occurs in the same time
step as fest is evaluated, every 25 ms. Thick line: mean over 10
independent runs. Thin lines: corresponding standard devia-
tion. Straight line: optimal noise amplification (with respect to
mean of stimulus distribution) !opt � 0:8; 0:4; 1:3 (left to
right), changing every 5 s according to stimulation. (e) Rela-
tive deviation from optimal noise level: j!opt�!j

!opt
.
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FIG. 2. (a) Output rate as a function of the ‘‘signal’’ input
current for five different levels of noise. Different noise con-
ditions due to a change of the conductances by a (gain) factor
!, ! � �gge; �ggi�, are modeled by a corresponding change in the
standard deviations ! ��e; �i�; here �gge � ! 0:01 �S,
�ggi � ! 0:032 �S, �e � ! 0:003 �S=

������
ms

p
, �i � !

0:0085 �S=
������
ms

p
, with ! � 0:35; 0:75; 1:15; 1:55; 1:95. The cur-

rent threshold is at 0:33 nA. (b) Solid line: Optimal output rate
as a function of the ‘‘signal’’ input current. The level of noise
was always chosen such that information transmission was
optimal. Dashed lines: output rate at noise levels that give
95% of the performance, in terms of d, compared to the
optimal case.
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For the evaluation of signal transmission in the
Hodgkin-Huxley–type model we choose the discrimina-
bility d,

d � 2
�N������ ��N���
�N������ � �N���

: (9)

The discriminability is calculated from the average
(output) spike count (�N) and the spike count variability
(�2N) for mean inputs � and �� ��, and relates to J, as
d � ��

���
J

p
for small ��; see [16].

In Fig. 2(b) the output rate at the noise level which
maximizes the discriminability d is plotted versus the
injected current (solid line). Like in the abstract model,
the ‘‘optimal’’ output rate is constant over a wide range of
average signal inputs. The dashed lines indicate the out-
put firing rates in the case of suboptimally adjusted noise;
here the noise is adjusted to yield 95% performance in
terms of the optimal value of d. Thus the width of the
maximum in d is fairly broad. The resulting optimal
frequency is � 4 Hz, which is close to the spontaneous
activity of cortical neurons.

If the noise level is optimized for a certain signal
strength, it is guaranteed that the discriminability for
small deviations from this input intensity is maximal.
Input statistics may change with time, thus the optimal
noise level may have to change as well. Here we consider a
scenario in which the mean input intensity may change
with time. Signals are then considered to be small devia-
tions from this mean; time scale and statistics (of the
changing mean) are assumed to be such that one noise
level may be optimal for many signals. Adaptation to the
120602-3
mean of a signal distribution is common in nature; see,
e.g., contrast adaptation [24].

The low optimal output rate immediately leads to two
questions: (i) Can a neuron use such a low output rate to
adapt to new stimulus distributions without averaging for
unrealistically long time intervals? (ii) Would a readout
mechanism be able to infer the existence of a signal
within a reasonable time?

The latter depends on the number of neurons receiving
correlated (signal) input. The performance for single neu-
rons would be poor. In populations (sizes go up to some
hundred neurons per population [25]) the performance
can be arbitrarily good.

Figures 3(a)–3(e) demonstrate that adaptation to some
mean input intensity is possible well within biologically
realistic time scales. The figure shows the dynamics of
adaptation of the noise level for a single model neuron to
three different mean input intensities. Adaptation is
based on an estimate fest of the average output activity
120602-3
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calculated from the number of output spikes in the pre-
ceding 500 ms. The synaptic conductances of the noise
inputs are strengthened if the neurons average firing rate
is below the optimal output activity fopt and weakened
otherwise. The simplest possible (formal) update rule for
the noise amplification parameter ! is given by

#!�tn� � "�fopt � fest�tn��; n is integer; (10)

where " determines the time scale for adaptation and
! determines the variance of the membrane potential
(see caption of Fig. 2). At times tn, fest is evaluated and
the update applies. As can be seen in Fig. 3(d), the neuron
succeeds in adapting the noise level to different signal
distributions well within approximately 2 s, despite a low
output rate. An adaptation time of 2–3 s is well within
realistic time scales [24].

Until now we have focused on the subthreshold regime,
but would an adaptation rule similar to Eq. (10) make
sense in case of suprathreshold stimuli? Suprathresh-
old stimuli result in output rates that are higher than the
optimal rate in the stochastic resonance regime. As a
consequence, the noise level would be reduced as much
as possible such that suprathreshold inputs are not dis-
turbed by (unnecessary) additional noise.

In summary, we have demonstrated that the optimal
noise level, in terms of information maximization, is a
function of the average output rate of a neuron, a measure
that is readily available everywhere within each single
neuron. We showed, using an abstract but generic model,
that the spike rate at the optimal noise level depends only
weakly upon the average strength of the signal distribu-
tion, and we demonstrate that these results carry over to a
biophysically more plausible framework. Hence simple
mechanisms which stabilize a neuron’s output rate may
be sufficient to adjust the noise level in order to optimally
exploit the phenomenon of stochastic resonance in the
nervous system.

The authors thank T. Hoch, L. Schwabe, and O. Shriki
for fruitful discussions. This work was supported by
Wellcome Trust (061113/Z/00) and DFG (SFB 618).
Part of the work was done while G.W. was a partici-
pant of the EC Advanced Course in Computational
Neuroscience.

Appendix.—Electric circuit models, model details, and
parameters:

Ileak � gleak�V � Eleak�; INa � �ggNa m3 h�V � ENa�;

IKd � �ggKdn4�V � EK�; IM � �ggMp�V � EK�;

Cm � 1 �F=cm2; gleak � 0:045 mS=cm2;

Eleak � �80 mV; Ee � 0 mV; Ei � �75 mV;

�e � 2:7 ms; �i � 10:5 ms:
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All simulations were performed in the NEURON simula-
tion environment [26]. The model neuron’s code is avail-
able from http://senselab.med.yale.edu/senselab/.
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